<span>Made of cells
</span><span>Reproduce
</span><span>Grow and Develop
</span><span>Respond to their Environment
</span><span>Genetic code</span>
To minimize the sharp pH shift that occurs when a strong acid is added to a solution, IT IS PRACTICAL TO ADD A WEAK BASE.
When a strong acid is added to a solution, it usually brings about a sharp change in the pH of the concerned solution. To avoid this, one can add a weak base to the solution first. The weak base will serves as a buffer for the strong acid and prevents the solution from experiencing sharp pH variations.
part 1 : the final volume : 1.404 L
part 2 : the initial concentration : 4.06 M
<h3>Further explanation
</h3>
Dilution is the process of adding a solvent to get a more dilute solution.
The moles(n) before and after dilution are the same.
Can be formulated :
M₁V₁=M₂V₂
M₁ = Molarity of the solution before dilution
V₁ = volume of the solution before dilution
M₂ = Molarity of the solution after dilution
V₂ = Molarity volume of the solution after dilution
part 1 :
M₁=44.8%
V₁=0.73 L
M₂=23.3%

part 2 :
V₁=739 ml=0.739 L
V₂=1.5 L
M₂=2

Answer:
Static Friction.
Explanation:
Friction is the force that resists the relative motion between the surfaces sliding against each other.
Static friction is friction between objects that are not in relative motion with each other.
The coefficient of static friction, typically denoted as μs,
Static friction arises due to surface roughness( relative term)
The static friction force can be overcome by an applied maximum force
F max = μs x N
N= normal force
Any force smaller than F max attempting to slide one surface over the other is opposed by a frictional force of equal magnitude and opposite direction.
Any force larger than F max overcomes the force of static friction and causes sliding to occur.
This maximum force is sometimes called the limiting value also. Here that value is 75 N.
<h2>Answer:</h2>
Option D is correct. It is independent of the reaction pathway.
<h2>Explanations:</h2><h2>What is Hess's law?</h2>
Hesslaw states that the enthalpy change of a reaction does not change regardless whether the reaction takes place in a single or multiple reaction pathways.
This shows that the total entalpy change of a reaction does not depend on the reaction pathway.