Answer: (C) Vaporizing
Explanation:
Vaporization is the process in which the substance change the state of of liquid into the gas state.
The vaporization process require the largest input of the energy as when the state is in the solid state then, the solid substances contain the strong forces of the attraction and they require high energy to break these strong bonds.
For changing the liquid state into the gases state we require to overcome the surface tension and require enough energy for acquiring the vaporization state.
Therefore, option (C) is correct.
Answer:
Half-life = 3 minutes
Explanation:
Using the radioactive decay equation we can solve for reaction constant, k. And by using:
K = ln2 / Half-life
We can find half-life of polonium-218
Radioactive decay:
Ln[A] = -kt + ln [A]₀
Where:
[A] could be taken as mass of polonium after t time: 1.0mg
k is Reaction constant, our incognite
t are 12 min
[A]₀ initial amount of polonium-218: 16mg
Ln[A] = -kt + ln [A]₀
Ln[1.0mg] = -k*12min + ln [16mg]
-2.7726 = - k*12min
k = 0.231min⁻¹
Half-life = ln 2 / 0.231min⁻¹
<h3>Half-life = 3 minutes</h3>
Conductivity, malleability, and high melting points. Hope this helps :)
Answer:
B.) Oxygen is usually -2
Explanation:
Hydrogen is usually +1.
A pure group 1 element is not always +1.
A monoatomic ion can be a range of numbers. However, it must be a charge other than 0.
Explanation:
To give the glass its final shape and size, it is blown into with a blowpipe, creating a sort of bubble of glass. To carry out this process, the blowpipe holding the glass must be placed on a steel stand. Then, the glass artist has to blow into the blowpipe while rotating it at the same