Answer:
a) v(2) = 2m/s, v(3) = -2m/s
b) speed at t = 2s is 2m/s
speed at t = 3s is 2m/s
c) 0 m/s
Explanation:
We can take the derivative of x(t) to find the equation of velocity
v(t) = x'(t) = 10 - 4t
(a) v(2) = 10 - 4*2 = 10 - 8 = 2 m/s
v(3) = 10 - 4*3 = 10 - 12 = -2 m/s
(b) The speed would be the same as velocity without the direction
speed at t = 2s is 2m/s
speed at t = 3s is 2m/s
(c) The average velocity between t = 2s and t = 3s is distance it travels over period of time


Answer:
the impulse experienced by the egg is 0.053 kgm/s.
Explanation:
Given;
mass of the egg, m = 60 g = 0.06 kg
initial velocity of the egg, u = 6 m/s
height moved by the egg, h = 50 cm = 0.5 m
Determine the final velocity of the egg as it moves upward;
v² = u² + 2(-g)h
v² = u² - 2gh
where;
v is the final velocity
-g is negative acceleration due gravity as it moves upward
v² = 6² - 2(9.8 x 0.5)
v² = 26.2
v = √26.2
v = 5.12 m/s
The impulse applied to the egg is the change in linear momentum;
J = ΔP
ΔP = mu - mv
ΔP = m(u - v)
ΔP = 0.06(6 - 5.12)
ΔP = 0.053 kgm/s
Therefore, the impulse experienced by the egg is 0.053 kgm/s.
Answer:
<em>The maximum voltage that can be applied without damaging the resistor is 4.85 V</em>
Explanation:
<u>Electric Power in a Resistor</u>
Given a resistor or resistance R connected to a circuit of voltage V carrying a current I. The relation between these three magnitudes is given by Ohm's Law:
V = R.I
The dissipated power P of a resistor can be calculated by the following equation, known as Joule's first law:

Solving the first equation for I:

Substituting in the second equation:

Simplifying:

Solving for V:

The resistor has a resistance of R=47Ω and can hold a maximum power of P=0.5 W, thus the maximum voltage is:


V = 4.85 V
The maximum voltage that can be applied without damaging the resistor is 4.85 V
Answer:
The coefficient of static friction between the box and floor is, μ = 0.061
Explanation:
Given data,
The mass of the box, m = 50 kg
The force exerted by the person, F = 50 N
The time period of motion, t = 10 s
The frictional force acting on the box, f = 30 N
The normal force on the box, η = mg
= 50 x 9.8
= 490 N
The coefficient of friction,
μ = f/ η
= 30 / 490
= 0.061
Hence, the coefficient of static friction between the box and floor is, μ = 0.061
The answer to this question would be:C. 22mf
In this question, there are two capacitors that connected in parallel. The formula to count the capacitor is the opposite of the formula used for the resistor. If constructed in series, the capacitor will have reduced capacitance. For parallel condition the equation would be:
Ctotal= C1+C2
C total= 2 mf+ 20mf= 22mf