The answer would most likely be A since obviously gravity weighs things down which helps the every other masses stay settled in place
Answer:
The kinetic energy K of the moving charge is K = 2kQ²/3d = 2Q²/(4πε)3d = Q²/6πεd
Explanation:
The potential energy due to two charges q₁ and q₂ at a distance d from each other is given by U = kq₁q₂/r.
Now, for the two charges q₁ = q₂ = Q separated by a distance d, the initial potential energy is U₁ = kQ²/d. The initial kinetic energy of the system K₁ = 0 since there is no motion of the charges initially. When the moving charge is at a distance of r = 3d, the potential energy of the system is U₂ = kQ²/3d and the kinetic energy is K₂.
From the law of conservation of energy, U₁ + K₁ = U₂ + K₂
So, kQ²/d + 0 = kQ²/3d + K
K₂ = kQ²/d - kQ²/3d = 2kQ²/3d
So, the kinetic energy K₂ of the moving charge is K₂ = 2kQ²/3d = 2Q²/(4πε)3d = Q²/6πεd
Answer:
The Arsenic has three electron-containing orbitals. The orbitals s, p and d.
Explanation:
Arsenic is an element with an atomic number equal of 33, it means that it has 33 electrons in its orbitals in the following way:








Therefore, the Arsenic has three electron-containing orbitals (s, p d).
The inflated balloon shrinks when it is placed in an ice bath with no change in atmospheric pressure.
<u>Explanation:</u>
When the inflated balloon is subjected to an ice bath, it shrinks. This is due to the fact that smaller volume gets occupied by the air/gas inside the balloon as the temperature decreases. Hence, causes the balloon walls to collapse.
An ice bath also lowers the overall air temperature of the balloon inside. As the temperature decreases, the air molecules move more slowly and with lower energy. Because of the particle's lower energy, their collisions with the walls are not enough to keep the inflated balloon.
It is the most massive planet in the solar system.