Answer: T = 472.71 N
Explanation: The wire vibrates thus making sound waves in the tube.
The frequency of sound wave on the string equals frequency of sound wave in the tube.
L= Length of wire = 26cm = 0.26m
u=linear density of wire = 20g/m = 0.02kg/m
Length of open close tube = 86cm = 0.86m
Sound waves in the tube are generated at the second vibrational mode, hence the relationship between the length of air and and wavelength is given as
L = 3λ/4
0.86 = 3λ/4
3λ = 4 * 0.86
3λ = 3.44
λ = 3.44/3 = 1.15m.
Speed of sound in the tube = 340 m/s
Hence to get frequency of sound, we use the formulae below.
v = fλ
340 = f * 1.15
f = 340/ 1.15
f = 295.65Hz.
f = 295.65 = frequency of sound wave in pipe = frequency of sound wave in string.
The string vibrated at it fundamental frequency hence the relationship the length of string and wavelength is given as
L = λ/2
0.26 = λ/2
λ = 0.52m
The speed of sound in string is given as v = fλ
Where λ = 0.52m f = 295.65 Hz
v = 295.65 * 0.52
v = 153.738 m/s.
The velocity of sound in the string is related to tension, linear density and tension is given below as
v = √(T/u)
153.738 = √T/ 0.02
By squaring both sides
153.738² = T / 0.02
T = 153.738² * 0.02
T = 23,635.372 * 0.02
T= 472.71 N
Answer:
Wear a helmet. Stay visible; use bike lights and/or wear bright clothes. Look and Signal; use hand signals to let drivers know where you're going, try to make eye contact with them and look before you go.
Explanation:
Answer:
The starting position is 3 m and the object is traveling at 3 m/s
Explanation:
Answer:
The total mechanical energy of a pendulum is conserved neglecting the friction.
Explanation:
- When a simple pendulum swings back and forth, it has some energy associated with its motion.
- The total energy of a simple pendulum in harmonic motion at any instant of time is equal to the sum of the potential and kinetic energy.
- The potential energy of the simple pendulum is given by P.E = mgh
- The kinetic energy of the simple pendulum is given by, K.E = 1/2mv²
- When the pendulum swings to one end, its velocity equals zero temporarily where the potential energy becomes maximum.
- When the pendulum reaches the vertical line, its velocity and kinetic energy become maximum.
- Hence, the total mechanical energy of a pendulum as it swings back and forth is conserved neglecting the resistance.
Answer:
A ratio is a way to compare quantities of things.
Explanation:
by dividing the number of moles of each by the smallest number of moles.