Answer:
Explanation:
In CF4 and NF3, the valence electron groups on the central C and N atoms have a tetrahedral arrangement. The shapes of the molecules are determined by the number of bonding and nonbonding of electrons: since CF4 has four bonded atom(s) and zero lone pair(s) of electrons, the shape is tetrahedral.
Answer:
When <em>a scientist on Earth drops a hammer and a feather at the same time an astronaut on the moon drops a hammer and a feather, the result</em> expected is that <em>the hammer hits the ground before the feather on Earth, and the hammer and feather hit at the same time on the moon (option D).</em>
Explanation:
In the abscence of atmosphere (vacuum), the objects fall in free fall. This is, the only force acting on the objects is the gravitational pull, which is directed vertlcally downward.
Under such absecence of air, the equations that rules the motion are:
- V = Vo + gt
- d = Vo + gt² / 2
- Vf² = Vo² + 2gd
As you see, all those equations are independent of the mass and shape of the object. This explains why <em>when an astronaut on the moon drops a hammer and a feather at the same time</em>, <em>the hammer and feather hit at the same time on the moon</em>, a space body where the gravitational attraction is so small (approximately 1/6 of the gravitational acceleration on Earth) that does not retain atmosphere.
On the other hand, the air (atmosphere) present in Earth will exert a considerable drag force on the feather (given its shape and small mass), slowing it down, whereas, the effect of the air on the hammer is almost neglectable. In general and as an approximation, the motion of the heavy bodies that fall near the surface is ruled by the free fall equations shown above, so, <em>the result </em>that is<em> expected when a scientist on Earth drops a hammer and a feather at the same time is that the hammer hits the ground before the feather</em>.
Explanation:
the solid substance which left on the filter paper is called Residue
The maximum height at which nitrogen molecule will go before coming to rest is 14 kilometers.
Given:
The nitrogen gas molecule with a temperature of 330 Kelvins is released from Earth's surface to travel upward.
To find:
The maximum height of a nitrogen molecule when released from the Earth's surface before coming to rest.
Solution:
- The maximum height attained by nitrogen gas molecule = h
- The temperature of nitrogen gas particle = T = 330 K
The average kinetic energy of the gas particles is given by:

The nitrogen molecule at its maximum height will have zero kinetic energy as all the kinetic energy will get converted into potential energy
- The potential energy at height h =

- Molar mass of nitrogen gas = 28.0134 g/mol
- Mass of nitrogen gas molecule = m

- The acceleration due to gravity = g = 9.8 m/s^2
- The maximum height attained by nitrogen gas molecule = h
- The potential energy is given by:


The maximum height at which nitrogen molecule will go before coming to rest is 14 kilometers.
Learn more about the average kinetic energy of gas particles here:
brainly.com/question/16615446?referrer=searchResults
brainly.com/question/6329137?referrer=searchResults
Answer:
sugar and oxygen
Explanation:
sugar (glucose) and oxygen