1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
weeeeeb [17]
3 years ago
7

HOW separate water mixture + mothballs?

Chemistry
1 answer:
White raven [17]3 years ago
5 0
You would need to evaporate it
 
You might be interested in
Click to review the online content. Then answer the question(s) below, using complete sentences. Scroll down to view additional
stiv31 [10]

Answer:

In 1851 gold-seekers from around the world began pouring into the colonies, changing the course of Australian history. The gold rushes greatly expanded Australia's population, boosted its economy, and led to the emergence of a new national identity.

Explanation:

3 0
3 years ago
Read 2 more answers
5. Why do we see a full moon only once every 29.5 days?
Rus_ich [418]

Answer:

C is the correct answer

Explanation:

The moon cycle is last 29.5 days

5 0
3 years ago
Read 2 more answers
Questions 3-6 refer to rhe solutions below:
Yanka [14]

Under room temperature where \text{pK}_w = 14:

3.) (A), (B), and (E).

4.) (D).

5.) (B).

<h3>Explanation</h3>

What makes a buffer solution? For a solution to be a buffer, it needs to contain large amounts of a weak acid and its conjugate base ion. Alternatively, the solution may contain large amounts of a weak base and its conjugate acid ion.  

Not every one of the five solutions is a buffer solution.

<h3>(A)</h3>

Ethanoic acid CH₃COOH (a.k.a. acetic acid) is a weak acid. pKa = 4.756. CH₃COONa is a salt. It dissolves to produce CH₃COO⁻, which is the conjugate base ion of CH₃COOH. The solution in (A) contains equal number of CH₃COOH and CH₃COO⁻, both at 1.0 M.

Refer to the Henderson-Hasselbalch equation for buffers of weak acids.

\displaystyle \text{pH} = \text{pK}_a + \log{\frac{[\text{Conjugate Ion}]}{[\text{Weak Acid}]}}.

\displaystyle \log{\frac{[\text{Conjugate Ion}]}{[\text{Weak Acid}]}} =\ln{1} = 0.

The pH of the solution in (A) will be the same as the pKa of CH₃COOH. pH = 4.746.

<h3>(B)</h3>

Consider the hydrogen halides:

  • HF: weak acid.
  • HCl: strong acid.
  • HBr: strong acid.

The radius of halogen atoms increases down the group, and hydrogen-halogen bond becomes weaker. It becomes easier for water to break those bonds. As a result, the strength of hydrogen halides increases down the group. HF is the only weak acid among the common hydrogen halides.

Mixing HBr and KBr at equal ratio will be similar to mixing HCl and KCl at the same ratio. All HBr in the solution breaks down into H⁺ and Br⁻. The pH of the solution will depend only on the concentration of HBr.

\displaystyle [\text{H}^{+}] = [\text{HBr}] \\\phantom{[\text{H}^{+}]}= \frac{n}{V} \\\phantom{[\text{H}^{+}]}= \frac{c(\text{HBr})\cdot V(\text{HBr})}{V(\text{HBr})+V(\text{KBr})}\\\phantom{[\text{H}^{+}]}=\frac{0.100\;\text{L}\times 1.0\;\text{mol}\cdot\text{L}^{-1}}{0.100\;\text{L}+0.100\;\text{L}} \\\phantom{[\text{H}^{+}]}= 0.50\;\text{mol}\cdot\text{L}^{-1}.

\text{pH} = -\log{[\text{H}^{+}] = -\log{0.50} \approx {\bf 0.30}.

<h3>(C)</h3>

Similarly to HCl and HBr, HI is also a strong acid. Mixing HI and NaOH at equal ratio will produce a solution of NaI, which is similar to NaCl. The final solution will be neutral. pH = 7 if pKw = 14.

<h3>(D)</h3>

NH₃ is a weak base. NH₄Cl dissolves completely to produce NH₄⁺ and Cl⁻. NH₄⁺ is the conjugate acid of NH₃. The final solution will contain an equal number of NH₃ and NH₄⁺. pKb = 4.75 for ammonia NH₃.

Apply the Henderson-Hasselbalch equation for buffers of weak bases:

\displaystyle \textbf{pOH} = \text{pK}_b + \log{\frac{[\text{Conjugate Ion}]}{[\text{Weak Base}]}}= 4.75 + \log{1} = 4.75.

Note that what this equation gives for buffers of weak bases is the pOH of the solution. pH = pKw - pOH. Assume that pKw = 14. pH = 14 - 4.75 = 9.25.

<h3>(E)</h3>

The solution in (E) will contain about 1.0 M of CH₃COOH. The volume of the solution will be 200 mL.

n(\text{CH}_3\text{COO}^{-}) = n(\text{NaOH}] = c\cdot V = 0.10\;\text{mol}.

\displaystyle [\text{CH}_3\text{COO}^{-}] = \frac{n}{V} = {0.10}{0.10 + 0.10} = 0.50 \;\text{mol}\cdot\text{L}^{-1}.

There's nearly no conjugate base of CH₃COOH. As a result, the solution will not be a buffer, and the Henderson-Hasselbalch Equation will not apply. Refer to an ICE table:

\begin{array}{c|ccccccc}\text{R}&\text{CH}_3\text{COO}^{-} &+&\text{H}_2\text{O}&\rightleftharpoons &\text{CH}_3\text{COOH}&+&\text{OH}^{-}\\\text{I}&0.50\\\text{C}& -x &&&& +x &&+x\\\text{E} &0.50 - x &&&&x&&x\end{array}

The value of pKa is large. Ka will be small. the value of x will be much smaller than 0.50 such that 0.50-x \approx 0.50.

The pKa of a weak acid is the same as pKw divided by the pKb of its conjugate base.

\displaystyle \frac{[\text{CH}_3\text{COOH}]\cdot[\text{OH}^{-}]}{[\text{CH}_3\text{COO}^{-}]} = \text{K}_b(\text{CH}_3\text{COO}^{-}) \\\phantom{\displaystyle \frac{[\text{CH}_3\text{COOH}]\cdot[\text{OH}^{-}]}{[\text{CH}_3\text{COO}^{-}]} }= \frac{\text{K}_w}{\text{K}_a(\text{CH}_3\text{COOH})} \\\phantom{\displaystyle \frac{[\text{CH}_3\text{COOH}]\cdot[\text{OH}^{-}]}{[\text{CH}_3\text{COO}^{-}]}} = \frac{10^{-14}}{1.75\times 10^{-5}} = 5.71\times 10^{-10}.

\displaystyle \frac{x^{2}}{0.50} =5.71\times 10^{-10}.

[\text{OH}^{-}] = x \approx 1.69\times 10^{-5}\;\text{mol}\cdot\text{L}^{-1}.

\text{pH} = \text{pK}_w + \log{[\text{OH}^{-}]} = 9.23.

7 0
3 years ago
A sample of tap water contains 1.95 x 10^3 ppm caco3. assuming the density of the tap water is 1.00 g/ml, calculate the mass of
Pavlova-9 [17]
3.9 grams CaCO3  
The mass of 2.0 L of water with a density of 1.00 g/ml is 2000 grams.And 1 ppm of that is 2000 / 1000000 = 0.002 grams. So just multiply by the ppm of CaCO3, giving 0.002 g * 1.95x10^3 = 3.90 grams.  
Since the least accurate datum we have is 2 significant figures, the result should be rounded to 2 significant figures, giving 3.9 grams.
7 0
3 years ago
Here’s the answers I wasn’t asking a question hehe!Subtract the mass of the filter paper (0.27g) from the mass of the paper and
GarryVolchara [31]
Do you still need help with this?
4 0
3 years ago
Other questions:
  • When benzene (c6h6) reacts with bromine (br2) bromobenzene(c6h5br) is obtained: c6h6 + br2 → c6h5br + hbr what is the theoretica
    8·1 answer
  • A positive nitrite test suggests the presence of a minimum of
    13·1 answer
  • Which of the following is not a simple machine
    7·1 answer
  • Coca cola is similar to tomato juice because
    9·2 answers
  • "accelerated erosion, or change in vegetation cover" tend to persist and grow over time, rather than a return to the pre-disturb
    13·1 answer
  • At a given temperature, 300m of carbon dioxide has a mass of 5.94kg. What is the density of carbon dioxide at this temperature
    7·1 answer
  • F2(g)+2Br(aq)=Br(t)+F(aq)<br> which species is redused?<br> a)F<br> b)Br<br> c)F2<br> d)Br2
    15·1 answer
  • What is the mass of 0.59L of SO2 at STP?
    12·1 answer
  • Can someone help me I am stuck on this question it would mean the world if u helped me =) have a nice day!
    12·2 answers
  • Help guys <br> Please <br> <br> Please help me if u know
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!