Answer:
(C) 29°
Explanation:
ACME THREAD ANGLE : it is the angle measured between the thread axis and thread the thread flanks, with the help of thread angle we calculate the shape of screw thread it is the mean of v thread and square thread the acme thread angle is denoted by β every thread has its own charactersistics which depends on the pitch and diameter of the thread
Answer:
The resultant moment is 477.84 N·m
Explanation:
We note that the resultant moment is given by the moment about a given point
The length of the sides of the formed triangles are;
l = sin(40°) × 4/sin(110°) ≈ 2.736
Taking the moment about the lower left hand corner of the figure, with the convention that clockwise moments are positive, we have;
The resultant moment, ∑m, is given as follow;
∑M = 250 N × 4 m + 400 N × cos(40°) × 4 m - 400 N × cos(40°) × 2 m + 400 N × sin(40°) × 2 m × tan(40°) - 600 N × cos(40°) × 2 m - 600 N× sin(40°) × 2 m × tan(40°) = 477.837084 N·m
Therefore, the resultant moment, ∑m ≈ 477.84 N·m clockwise.
Answer:
Use a story structure,
Explanation: Usually story engage the audience.
Answer:
a. 164 °F b. 91.11 °C c. 1439.54 kJ
Explanation:
a. [1 pts] How many degrees Fahrenheit (°F) must you raise the temperature?
Since the starting temperature is 48°F and the final temperature which water boils is 212°F, the number of degrees Fahrenheit we would need to raise the temperature is the difference between the final temperature and the initial temperature.
So, Δ°F = 212 °F - 48 °F = 164 °F
b. [2 pts] How many degrees Celsius (°C) must you raise the temperature?
To find the degree change in Celsius, we convert the initial and final temperature to Celsius.
°C = 5(°F - 32)/9
So, 48 °F in Celsius is
°C₁ = 5(48 - 32)/9
°C₁ = 5(16)/9
°C₁ = 80/9
°C₁ = 8.89 °C
Also, 212 °F in Celsius is
°C₂ = 5(212 - 32)/9
°C₂ = 5(180)/9
°C₂ = 5(20)
°C₂ = 100 °C
So, the number of degrees in Celsius you must raise the temperature is the temperature difference between the final and initial temperatures in Celsius.
So, Δ°C = °C₂ - °C₁ = 100 °C - 8.89 °C = 91.11 °C
c. [2 pts] How much energy is required to heat the four quarts of water from
48°F to 212°F (boiling)?
Since we require 15.8 kJ for every degree Celsius of temperature increase of the four quarts of water, that is 15.8 kJ/°C and it rises by 91.11 °C, then the amount of energy Q required is Q = amount of heat per temperature rise × temperature rise = 15.8 kJ/°C × 91.11 °C = 1439.54 kJ
Answer:
the width of the turning roadway = 15 ft
Explanation:
Given that:
A ramp from an expressway with a design speed(u) = 30 mi/h connects with a local road
Using 0.08 for superelevation(e)
The minimum radius of the curve on the road can be determined by using the expression:

where;
R= radius
= coefficient of friction
From the tables of coefficient of friction for a design speed at 30 mi/h ;
= 0.20
So;



R = 214.29 ft
R ≅ 215 ft
However; given that :
The turning roadway has stabilized shoulders on both sides and will provide for a onelane, one-way operation with no provision for passing a stalled vehicle.
From the tables of "Design widths of pavement for turning roads"
For a One-way operation with no provision for passing a stalled vehicle; this criteria falls under Case 1 operation
Similarly; we are told that the design vehicle is a single-unit truck; so therefore , it falls under traffic condition B.
As such in Case 1 operation that falls under traffic condition B in accordance with the Design widths of pavement for turning roads;
If the radius = 215 ft; the value for the width of the turning roadway for this conditions = 15ft
Hence; the width of the turning roadway = 15 ft