Answer:
note:
<u>solution is attached in word form due to error in mathematical equation. furthermore i also attach Screenshot of solution in word due to different version of MS Office please find the attachment</u>
The x-ray beam's penetrating power is regulated by kVp (beam quality). Every time an exposure is conducted, the x-rays need to be powerful (enough) to sufficiently penetrate through the target area.
<h3>How does kVp impact the exposure to digital receptors?</h3>
The radiation's penetration power and exposure to the image receptor both increase as the kVp value is raised.
<h3>Exposure to the image receptor is enhanced with an increase in kVp, right?</h3>
Due to an increase in photon quantity and penetrability, exposure at the image receptor rises by a factor of five of the change in kVp, doubling the intensity at the detector with a 15% change in kVp.
To know more about kVp visit:-
brainly.com/question/17095191
#SPJ4
Answer:
σ = 391.2 MPa
Explanation:
The relation between true stress and true strain is given as:
σ = k εⁿ
where,
σ = true stress = 365 MPa
k = constant
ε = true strain = Change in Length/Original Length
ε = (61.8 - 54.8)/54.8 = 0.128
n = strain hardening exponent = 0.2
Therefore,
365 MPa = K (0.128)^0.2
K = 365 MPa/(0.128)^0.2
k = 550.62 MPa
Now, we have the following data:
σ = true stress = ?
k = constant = 550.62 MPa
ε = true strain = Change in Length/Original Length
ε = (64.7 - 54.8)/54.8 = 0.181
n = strain hardening exponent = 0.2
Therefore,
σ = (550.62 MPa)(0.181)^0.2
<u>σ = 391.2 MPa</u>