Answer:
You can look it up
Explanation: if you don't know what it is look it up on .
Answer:
The velocity in the pipe is 5.16m/s. The pipe diameter for the second fluid should be 6.6 mm.
Explanation:
Here the first think you have to consider is the definition of the Reynolds number (
) for flows in pipes. Rugly speaking, the Reynolds number is an adimensonal parameter to know if the fliud flow is in laminar or turbulent regime. The equation to calculate this number is:

where
is the density of the fluid,
is the viscosity, D is the pipe diameter and v is the velocity of the fluid.
Now, we know that Re=2100. So the velocity is:

For the second fluid, we want to keep the Re=2100 and v=5.16m/s. Therefore, using the equation of Reynolds number the diameter is:

Answer:
1. Measure the temperature of the boxes and leave them unconnected.
2. Norton reduces his circuit down to a single resistance in parallel with a constant current source. A real-life Norton equivalent circuit would be continuously wasting power (as heat) as the current source dumps energy into the resistor, even when externally unconnected, while a Thevenin equivalent circuit would sit there doing nothing.
3. The Norton equivalent box would get warm and eventually run out of power. The Thevenin equivalent box would stay at ambient temperature.
Answer:
B. Based on the allowable shear stress, but the allowable normal stress should always be checked to be sure it is not exceeded
Explanation:
Shear stress is analyzed to determine the shear forces along the lenght of the beam. This is represented in a shear force diagram. The beam cross sectional design is determined in such a way as to minimize the shear stress. Allowable normal stress should always be checked in a structure if failure is to be prevented.