Answer:
the surface heat-transfer coefficient due to natural convection during the initial cooling period. = 4.93 w/m²k
Explanation:
check attachement for answer explanation
Answer:
1700kJ/h.K
944.4kJ/h.R
944.4kJ/h.°F
Explanation:
Conversions for different temperature units are below:
1K = 1°C + 273K
1R = T(K) * 1.8
= (1°C + 273) * 1.8
1°F = (1°C * 1.8) + 32
Q/delta T = 1700kJ/h.°C
T (K) = 1700kJ/h.°C
= 1700kJ/K
T (R) = 1700kJ/h.°C
= 1700kJ/h.°C * 1°C/1.8R
= 944.4kJ/h.R
T (°F) = 1700kJ/h.°C
= 1700kJ/h.°C * 1°C/1.8°F
= 944.4kJ/h.°F
Note that arithmetic operations like subtraction and addition of values do not change or affect the value of a change in temperature (delta T) hence, the arithmetic operations are not reflected in the conversion. Illustration: 5°C - 3°C
= 2°C
(273+5) - (273+3)
= 2 K
9514 1404 393
Answer:
1
Explanation:
Only one such circle can be drawn. The diameter of the 10" circle will be a radius of the semicircle. In order for the 10" circle to be wholly contained, the flat side of the semicircle must be tangent to the 10" circle. There is only one position in the figure where that can happen. (see attached).
1.Only suitable for dc
2.more expensive than moving iron type
3. Easily damaged
Answer:
5E22 atoms/cm³
Explanation:
We need to find the number of moles of silicon per cm³
number of moles per cm³ = density/atomic weight = 2.33 g/cm ÷ 28.09 g/mol = 0.083 mol/cm³.
Since there are 6.022 × 10²³ atoms/mol, then the number of atoms of silicon per cm³ = number of atoms per mol × number of moles per cm³
= 6.022 × 10²³ atoms/mol × 0.083 mol/cm³
= 0.4995 × 10²³ atoms/cm³
= 4.995 × 10²² atoms/cm³
≅ 5 × 10²² atoms/cm³
= 5E22 atoms/cm³