<u>Answer:</u> The correct answer is Option d.
<u>Explanation:</u>
We are given:
Mass percentage of
= 20 %
So, mole fraction of
= 0.2
Mass percentage of
= 30 %
So, mole fraction of
= 0.3
Mass percentage of
= 35 %
So, mole fraction of
= 0.35
Mass percentage of
= 15 %
So, mole fraction of
= 0.15
We know that:
Molar mass of
= 16 g/mol
Molar mass of
= 28 g/mol
Molar mass of
= 26 g/mol
Molar mass of
= 48 g/mol
To calculate the average molecular mass of the mixture, we use the equation:

where,
= mole fractions of i-th species
= molar masses of i-th species
= number of observations
Putting values in above equation:


Hence, the correct answer is Option d.
Answer: (C) Although the average kinetic energy of the colliding substances increases, this has no influence on activation energy.
Explanation:
After increasing the temperature of the reaction , the rate of the chemical reaction increases due to increase in the average kinetic energy of the particles. At increased temperature high proportions of particles can react making the reaction faster.
The answer is epipelagic zone
Answer:
Change in internal energy (ΔU) = -9 KJ
Explanation:
Given:
q = –8 kJ [Heat removed]
w = –1 kJ [Work done]
Find:
Change in internal energy (ΔU)
Computation:
Change in internal energy (ΔU) = q + w
Change in internal energy (ΔU) = -8 KJ + (-1 KJ)
Change in internal energy (ΔU) = -8 KJ - 1 KJ
Change in internal energy (ΔU) = -9 KJ
Answer:
Choice A: approximately
.
Explanation:
Note that the unit of concentration,
, typically refers to moles per liter (that is:
.)
On the other hand, the volume of the two solutions in this question are apparently given in
, which is the same as
(that is:
.) Convert the unit of volume to liters:
.
.
Calculate the number of moles of
formula units in that
of the
solution:
.
Note that
(sulfuric acid) is a diprotic acid. When one mole of
completely dissolves in water, two moles of
ions will be released.
On the other hand,
(sodium hydroxide) is a monoprotic base. When one mole of
formula units completely dissolve in water, only one mole of
ions will be released.
ions and
ions neutralize each other at a one-to-one ratio. Therefore, when one mole of the diprotic acid
dissolves in water completely, it will take two moles of
to neutralize that two moles of
produced. On the other hand, two moles formula units of the monoprotic base
will be required to produce that two moles of
. Therefore,
and
formula units would neutralize each other at a two-to-one ratio.
.
.
Previous calculations show that
of
was produced. Calculate the number of moles of
formula units required to neutralize that
.
Calculate the concentration of a
solution that contains exactly
of
formula units:
.