C. the denser the plants the better.
Answer:
C
ΔHrxn = ΣδΗ(bond breaking) - ΣδΗ(bond making)
Bond enthalpies,
N ≡ N ⇒ 945 kJ mol⁻¹
N - Cl ⇒ 192 kJ mol⁻¹
Cl - Cl⇒ 242 kJ mol⁻¹
According to the balanced equation,
ΣδΗ(bond breaking) = N ≡ N x 1 + Cl - Cl x 3
= 945 + 3(242)
= 1671 kJ mol⁻¹
ΣδΗ(bond making) = N - Cl x 3 x 2
= 192 x 6
= 1152 kJ mol⁻¹
δHrxn = ΣδΗ(bond breaking) - ΣδΗ(bond making)
= 1671 kJ mol⁻¹ - 1152 kJ mol⁻¹
= 519 kJ mol⁻¹
Answer:
When an atom gains/loses an electron, the atom becomes charged, and is called an ion. Gaining an electron results in a negative charge, so the atom is an anion
Regard the principle of utilization of two gas.
Make a consistent control of hardware containing gas.
Make a consistent control of weight diminishing valves giving gas.
No smoking zone.
Answer:
2.05moles
Explanation:
The balanced chemical equation in this question is as follows;
Sn + 2H2SO4 → SnSO4 + SO2 + 2H2O
Based on the above equation, 2 moles of H2SO4 reacted to produce 1 mole of SnSO4
However, the mass of SnSO4 produced is 219.65 grams. Using mole = mass/molar mass, we can find the number of moles of SnSO4 produced.
Molar mass of SnSO4 where Sn = 118.7, S = 32, O = 16
= 118.7 + 32 + 16(4)
= 150.7 + 64
= 214.7g/mol
mole = 219.65/214.7
mole = 1.023mol
Therefore, if 2 moles of H2SO4 reacted to produce 1 mole of SnSO4
1.023 mol of SnSO4 produced will cause: 1.023 × 2/1
= 2.046moles of H2SO4 to react.