Answer:
in an ancient
Explanation:
when the word begins with a vowel you say an instead of a
<u>Answer:</u> The equilibrium partial pressure of chlorine gas is 0.360 atm
<u>Explanation:</u>
For the given chemical equation:

The expression of
for above reaction follows:

We are given:

Putting values in above equation, we get:

Hence, the equilibrium partial pressure of chlorine gas is 0.360 atm
Litmus is an indicator
Charged particles are ions
Acids contain H+ ions
Bases contain OH - ions
Hydronium ions are H3O+
Now, I have to take issue with the last one
A base of pH 14 is not a strong base, it would be a highly concentrated base. A strong base is a base that completely deionizes in water.
But technically, for the purpose of your answer strong base = pH 14
Answer:
b) add 130 g of NaCH₃CO₂ to 100 mL of H₂O at 80 °C while stirring until all the solid dissolves, then let the solution cool to room temperature.
Explanation:
The solubility of NaCH₃CO₂ in water is ~1.23 g/mL. This means that at room temperature, we can dissolve 1.23 g of solute in 1 mL of water (solvent).
<em>What would be the best method for preparing a supersaturated NaCH₃CO₂ solution?</em>
<em>a) add 130 g of NaCH₃CO₂ to 100 mL of H₂O at room temperature while stirring until all the solid dissolves.</em> NO. At room temperature, in 100 mL of H₂O can only be dissolved 123 g of solute. If we add 130 g of solute, 123 g will dissolve and the rest (7 g) will precipitate. The resulting solution will be saturated.
<em>b) add 130 g of NaCH₃CO₂ to 100 mL of H₂O at 80 °C while stirring until all the solid dissolves, then let the solution cool to room temperature. </em>YES. The solubility of NaCH₃CO₂ at 80 °C is ~1.50g/mL. If we add 130 g of solute at 80 °C and let it slowly cool (and without any perturbation), the resulting solution at room temperature will be supersaturated.
<em>c) add 1.23 g of NaCH₃CO₂ to 200 mL of H₂O at 80 °C while stirring until all the solid dissolves, then let the solution cool to room temperature.</em> NO. If we add 1.23 g of solute to 200 mL of water, the resulting solution will have a concentration of 1.23 g/200 mL = 0.00615 g/mL, which represents an unsaturated solution.