they are all an energy particle
Answer:
≈29.94 [°C].
Explanation:
all the details are in the attachment, the answer is underlined with orange colour.
Explanation:
Whenever we need to make a dilute solution of an acid then it is necessary to add water or non-acidic component into the acid first. This is because addition of water or non-acidic component directly into the acid could be highly exothermic in nature.
As a result, the acid can splutter and can cause burning of skin and other serious damage.
So, in order to avoid such type of damage the addition of water or non-acidic component into the acid actually helps to minimize the heat generated.
Thus, we can conclude that correct order of steps for making a more dilute solution of an acid is that either add all of the water or non-acid component first, or add a significant portion, before adding the acid to the mixture.
CaCO₃ partially dissociates in water as Ca²⁺ and CO₃²⁻. The balanced equation is,
CaCO₃(s) ⇄ Ca²⁺(aq) + CO₃²⁻(aq)
Initial Y - -
Change -X +X +X
Equilibrium Y-X X X
Ksp for the CaCO₃(s) is 3.36 x 10⁻⁹ M²
Ksp = [Ca²⁺(aq)][CO₃²⁻(aq)]
3.36 x 10⁻⁹ M² = X * X
3.36 x 10⁻⁹ M² = X²
X = 5.79 x 10⁻⁵ M
Hence the solubility of CaCO₃(s) = 5.79 x 10⁻⁵ M
= 5.79 x 10⁻⁵ mol/L
Molar mass of CaCO₃ = 100 g mol⁻¹
Hence the solubility of CaCO₃ = 5.79 x 10⁻⁵ mol/L x 100 g mol⁻¹
= 5.79 x 10⁻³ g/L
This is known as polymerisation