Answer:
weightlessness, condition experienced while in free-fall, in which the effect of gravity is canceled by the inertial (e.g., centrifugal) force resulting from orbital flight. ... Excluding spaceflight, true weightlessness can be experienced only briefly, as in an airplane following a ballistic (i.e., parabolic) path.
I have the exact same question, any chance you figured it out since you posted this?
Answer:
a) b) d)
Explanation:
The question is incomplete. The Complete question might be
In an inertial frame of reference, a series of experiments is conducted. In each experiment, two or three forces are applied to an object. The magnitudes of these forces are given. No other forces are acting on the object. In which cases may the object possibly remain at rest? The forces applied are as follows: Check all that apply.
a)2 N; 2 N
b) 200 N; 200 N
c) 200 N; 201 N
d) 2 N; 2 N; 4 N
e) 2 N; 2 N; 2 N
f) 2 N; 2 N; 3 N
g) 2 N; 2 N; 5 N
h ) 200 N; 200 N; 5 N
For th object to remain at rest, sum of all forces must be equal to zero. Use minus sign to show opposing forces
a) 2+(-2)=0 here minus sign is to show the opposing firection of force
b) 200+(-200)=0
c) 200+(-201)
0
d) 2+2+(-4)=0
e) 2+2+(-2)
0
f) 2+2+(-3)
0; 2+(-2)+3
0
g) 2+2+(-5)
0; 2+(-2)+5
0
h)200 + 200 +(-5)
0; 200+(-200)+5
0
Answer:
Induced current, I = 18.88 A
Explanation:
It is given that,
Number of turns, N = 78
Radius of the circular coil, r = 34 cm = 0.34 m
Magnetic field changes from 2.4 T to 0.4 T in 2 s.
Resistance of the coil, R = 1.5 ohms
We need to find the magnitude of the induced current in the coil. The induced emf is given by :

Where
is the rate of change of magnetic flux,
And 



Using Ohm's law, 
Induced current, 

I = 18.88 A
So, the magnitude of the induced current in the coil is 18.88 A. Hence, this is the required solution.
Earth is the center according to the geocentric model.