Answer:
The magnitude of the force, B = 5 Tesla, Up (North) direction
Explanation:
Magnetic force F= Eq where Electric field, E = 750 NC
and charge, q = -70 μC = -7 ×
C
F = 750 × -7 ×
F = 0.0525
But F = qvB; B = 
where B is the magnetic field
= 0.0525 ÷ ( -7 ×
× 30)
B = 5.0 Teslas
The force on a negative charge is in exactly the opposite direction to that on a positive charge.
Hence the direction of the charge is up (North).
voltage across 2.0μf capacitor is 5.32v
Given:
C1=2.0μf
C2=4.0μf
since two capacitors are in series there equivalent capacitance will be
[tex] \frac{1}{c} = \frac{1}{c1} + \frac{1}{c2} [/tex]


=1.33μf
As the capacitance of a capacitor is equal to the ratio of the stored charge to the potential difference across its plates, giving: C = Q/V, thus V = Q/C as Q is constant across all series connected capacitors, therefore the individual voltage drops across each capacitor is determined by its its capacitance value.
Q=CV
given,V=8v


charge on 2.0μf capacitor is


=5.32v
learn more about series capacitance from here: brainly.com/question/28166078
#SPJ4
Answer:
took longer to complete one oscillation, that means its PERIOD increased, and the distance between the peaks of the graph would be longer.
line would be less. the period of oscillation would have any effect on the graph