If u are multiplaying it would be 80 percent more likely
or if u are subtracting it would be 20 percent
Answer:
pH = 1.32
Explanation:
H₂M + KOH ------------------------ HM⁻ + H₂O + K⁺
This problem involves a weak diprotic acid which we can solve by realizing they amount to buffer solutions. In the first deprotonation if all the acid is not consumed we will have an equilibrium of a wak acid and its weak conjugate base. Lets see:
So first calculate the moles reacted and produced:
n H₂M = 0.864 g/mol x 1 mol/ 116.072 g = 0.074 mol H₂M
54 mL x 1L / 1000 mL x 0. 0.276 moles/L = 0.015 mol KOH
it is clear that the maleic acid will not be completely consumed, hence treat it as an equilibrium problem of a buffer solution.
moles H₂M left = 0.074 - 0.015 = 0.059
moles HM⁻ produced = 0.015
Using the Henderson - Hasselbach equation to solve for pH:
ph = pKₐ + log ( HM⁻/ HA) = 1.92 + log ( 0.015 / 0.059) = 1.325
Notes: In the HH equation we used the moles of the species since the volume is the same and they will cancel out in the quotient.
For polyprotic acids the second or third deprotonation contribution to the pH when there is still unreacted acid ( Maleic in this case) unreacted.
(a)The change in Gibbs free energy for the reaction has been 2.6 kJ/mol.
(b) The change in Gibbs free energy for the reaction has been -49.3 kJ/mol.
(c) The change in Gibbs free energy for the reaction has been 91.38 kJ/mol.
The answer is NO. During combustion of hydrogen, water is produced as an end product. The chemical formulae for combustion of hydrogen are:
2H2 + O2 -->2 H2O
another advantage is that the whole of the fuel load is combusted hence little wastage. This has made the fuel advantageous in its use as rocket fuel since there is no baggage fuel.
If reactants eventually collide,
there is an occurrence of reaction.
<span>
Therefore, when there is an increase concentration of
reactant, meaning to say that there are several moles of it every unit volume. An
example of this is a room having hundred of people will absolutely get higher
concentration compared to a room with one individual only.
Pertaining to effective collisions, if ever there is an
increase of concentration, the frequency and rate of effective collisions among
reactants surges in such a way that the rate of reaction also surges. Same with
passing into a room with only 1 individual compared to hundred people blind
persons, you probably want to proceed to the room with several people.</span>
<span>This is the simple logic
behind that scientific existence.</span>