Answer:
The answer to your question is 3 ml
Explanation:
Data
Dosage = 9.0 mg/ kg
Child's weight = 42.9 pounds
Suspension = 60 mg/ml
milliliters = ?
Process
1.- Convert the weight to kg
1 pound ------------------- 0.453 kg
42.9 pounds --------------- x
x = (42.9 x 0.453) / 1
x = 19.43 kg
2.- Calculate the milligrams the child needs
1 kg of weight ------------ 9 mg
19.43 kg ---------------------- x
x = (19.43 x 9) / 1
x = 174.87 mg of oxcarbazepine
3.- Calculate the milliliters needed
60 mg of suspension ------------- 1 milliliters
174.87 mg -------------- x
x = (174.87 x 1) / 60
x = 2.9 ml ≈ 3 ml
Answer:
The average kinetic energy of A is greater than that of B.
Explanation:
The temperature of an object is directly proportional to the average kinetic energy of the particles in the object. For instance, for an ideal gas, we have
where
KE is the kinetic energy
k is the Boltzmann constant
T the absolute temperature of the gas
Therefore, this means that in a hotter object the average kinetic energy of the particles is higher than the average kinetic energy of the particles in a colder object.
Moreover, the laws of thermodynamics tell us that heat is always transferred from a hotter object (higher temperature) to a colder object (lower temperature).
In this problem heat is transferred from sample A to sample B. Therefore, this means that object A has higher temperature, and therefore, higher average kinetic energy. So the correct answer is
The average kinetic energy of A is greater than that of B.
Answer:
Ca(OH)2 will not precipitate because Q<Ksp
Explanation:
Ksp for Ca(OH)2 has already been stated in the question as 8.0 x 10-8mol2dm-6
The value of the reaction quotient depends heavily on the concentration of the reactants. As the initial concentration of the calcium carbide decreases considerably, the reaction quotient decreases until Q<Ksp hence the Ca(OH)2 will not precipitate from solution.
The reaction equation is:
CaC₂(s) + H₂O ⇒ Ca(OH)₂ + C₂H₂
From
Ca(OH)2= Ca2+ + 2OH-
Concentration of solution= 0.064×1/64= 1×10-3
Since [Ca2+] = 1×10-3
[OH-]= (2×10-3)^2= 4×10^-6
Hence Q= 4×10^-9
This is less than the Ksp hence the answer.
The group 7A elements are called Halogens.
Please mark as brainliest if this helped! :)
<h3>
Answer:</h3>
Al- [Ne] 3s²3p¹
As- [Ar] 4s²3d¹⁰ 4p³
Explanation:
- Electron configuration of an element shows the arrangement of electrons in the energy levels or orbitals in the atom.
- Noble-gas configuration involves use of noble gases to write the configuration of other elements.
- This is done by identifying the atomic number of the element and then identifying the noble gas that comes before that particular element on the periodic table.
- Aluminium: The atomic number of Al is 13. The noble gas before Aluminium is Neon which has 10 electrons. Therefore the remaining 3 electrons fills up the 3s and 3p sub orbitals.
- Thus, the noble-gas configuration of Al is [Ne] 3s²3p¹
2. Arsenic, Atomic number is 33
- Noble gas before Arsenic is Ar,. Argon has 17 electrons, then the remaining electrons fills up the 4s, 3d and 4p sub-orbitals.
- Thus, the noble-gas configuration of As is [Ar] 4s²3d¹⁰ 4p³