Answer:
130 g of sucrose
Explanation:
Boiling point elevation formula → ΔT = Kb . m
ΔT = Boiling T° solution - Boiling T° pure solvent → 0.39°C
0.39°C = 0.513°C/m . M
m = 0.760 mol/kg → molality = moles of solute / 1kg of solvent
Let's determine the moles of solute → molality . kg
0.760 mol/kg. 0.5 kg = 0.380 moles
If we convert the moles to mass, we'll get the answer
0.380 mol . 342.30 g/mol = 130g
Explanation:
According to Le Chatelier's principle, any disturbance caused in an equilibrium reaction will shift the equilibrium in a direction that will oppose the change.
As the given reaction is as follows.

(a) When increase the temperature of the reactants or system then equilibrium will shift in forward direction where there is less temperature. It is possible for an endothermic reaction.
Thus, formation of
will increase.
- (b) When we decrease the volume (at constant temperature) of given reaction mixture then it implies that there will be increase in pressure of the system. So, equilibrium will shift in a direction where there will be decrease in composition of gaseous phase. That is, in the backward direction reaction will shift.
Hence, formation of
will decrease with decrease in volume.
- When we increase the mount of
then equilibrium will shift in the direction of decrease in concentration that is, in the forward direction.
Thus, we can conclude that formation of
will increase then.
Answer:
B. The student chose the correct tile, but needs to flip the tile to make the units cancel
Explanation:
Based on the reaction:
2AgNO₃(aq) + Cu(s) → 2Ag(s) + Cu(NO₃)₂ (aq)
<em>2 moles of AgNO₃ react per mole of Cu producing 2 moles of Ag and 1 mole of Cu(NO₃)₂</em>
Thus, if you want to produce 6.75moles of Cu(NO₃)₂ you need:
= 13.50 moles of AgNO₃ are needed
Thus, if you analize the tile shown by the student:
<em>B. The student chose the correct tile, but needs to flip the tile to make the units cancel</em>
Answer:
800mL
Explanation:
Using Boyle's law which states that the volume of a given mass of gas is inversely proportional to the pressure, provided temperature remains constant
P1V1= P2V2
P1 = 2 atm, V1 = 2000mL ,
P2 = 5atm , V2 = ?
2 × 2000 = 5 × V2
Divide both sides by 5
V2 = 4000 ÷ 5
V2 = 800mL
I hope this was helpful, please mark as brainliest