Answer:
A. In a graduated cylinder, put some quantity of water and measure the initial volume. Then put a coin and measure the volume. To find the volume of the coin, simply subtract the initial volume (water only) from the ending volume (water + coin). To measure the mass, take a dry coin and place it on an electronic scale. Density = mass / volume, so divide the mass by the volume to calculate the density of the coin.
B. When measuring the volume, make sure to look at the graduated cylinder at eye level and read from the bottom of the meniscus.
This problem could be solved easily using the Henderson-Hasselbach equation used for preparing buffer solutions. The equation is written below:
pH = pKa + log[(salt/acid]
Where salt represents the molarity of salt (sodium lactate), while acid is the molarity of acid (lactic acid).
Moles of salt = 1 mol/L * 25 mL * 1 L/1000 mL = 0.025 moles salt
Moles of acid = 1 mol/L* 60 mL * 1 L/1000 mL = 0.06 moles acid
Total Volume = (25 mL + 60 mL)*(1 L/1000 mL) = 0.085 L
Molarity of salt = 0.025 mol/0.085 L = 0.29412 M
Molarity of acid = 0.06 mol/0.085 L = 0.70588 M
Thus,
pH = 3.86 + log(0.29412/0.70588)
pH = 3.48
Answer : The molar mass of an acid is 266.985 g/mole
Explanation : Given,
Mass of an acid (HX) = 4.7 g
Volume of NaOH = 32.6 ml = 0.0326 L
Molarity of NaOH = 0.54 M = 0.54 mole/L
First we have to calculate the moles of NaOH.

Now we have to calculate the moles of an acid.
In the titration, the moles of an acid will be equal to the moles of NaOH.
Moles of an acid = Moles of NaOH = 0.017604 mole
Now we have to calculate the molar mass of and acid.

Now put all the given values in this formula, we get:


Therefore, the molar mass of an acid is 266.985 g/mole
Answer:
Electrons
Explanation:
In an atom there would be three subatomic particles: Neutrons, electrons, protons. The smallest and lightest in terms of mass is electrons. This is because the nucleus is comprised of the protons and the neutrons, these have a greater mass than electrons as electrons has very little mass that can considered to be 0.
Answer: Wheel and Axle
Both of these work together to form a simple machine. You can't have one without the other.
If you try to turn just the axle itself, then you'll find it takes a lot of work. This is because the inertia of the axle wants to keep the object at rest. Also, you won't have a lot of torque due to the small radius compared to what a doorknob can offer.
Using a doorknob is like putting a (steering) wheel on an axle. This increases the radius and therefore increases the torque. You put in less work into the system and get more out of it.