Answer: 58.44g
Explanation: The molar mass of NaCl is 58.44g.
Answer:
Option E. Zirconium
Explanation:
From the question given above, the following data were obtained:
Length of side (L) of cube = 0.2 cm
Mass (m) of cube = 52 mg
Name of the unknown metal =?
Next, we shall determine the volume of the cube. This can be obtained as follow:
Length of side (L) of cube = 0.2 cm
Volume (V) of the cube =?
V = L³
V = 0.2³
V = 0.008 cm³
Next, we shall convert 52 mg to g. This can be obtained as follow:
1000 mg = 1 g
Therefore,
52 mg = 52 mg × 1 g / 1000 mg
52 mg = 0.052 g
Thus, 52 mg is equivalent to 0.052 g.
Next, we shall determine the density of the unknown metal. This can be obtained as follow:
Mass = 0.052 g.
Volume = 0.008 cm³
Density =?
Density = mass / volume
Density = 0.052 / 0.008
Density of the unknown metal = 6.5 g/cm³
Comparing the density of the unknown metal i.e 6.5 g/cm³ with those given in table in the above, we can conclude that the unknown metal is zirconium
Answer:
Se detailed explanation.
Explanation:
Hello,
In this case, since both magnesium and calcium ions are in group IIA, we can review the following similar properties:
- Since both calcium and magnesium are in group IIA they have two valence electrons, it means that the both of them have two electrons at their outer shells.
- They are highly soluble in water when forming ionic bonds with nonmetals such as those belonging to halogens and oxygen's family.
- Calcium has 18 electrons and magnesium 10 which are two less than the total protons (20 and 12 respectively) since the both of them have lost two electrons due their ionized form.
- Their electron configurations are:

It means that the both of them are at the
region since it is the last subshell at which their electrons are.
Best regards.
The answer is B Nitrogen atoms will form three covalent bonds (also called triple covalent) between two atoms of nitrogen because each nitrogen atom needs three electrons to fill its outermost shell. Another example of a nonpolar covalent bond is found in the methane (CH4) molecule.