<h2>
Hello!</h2>
The answer is:
The empirical formula is the option B. 
<h2>
Why?</h2>
The empirical formula of a compound is the simplest formula that can be written. On the opposite, the molecular formula involves a variant of the same compound, but it can be also simplified to an empirical formula.

We are looking for a formula that cannot be simplified by dividing the number of molecules/atoms that conforms the compound.
Let's discard option by option in order to find which formula is an empirical formula (cannot be simplified)
A. 
It's not an empirical formula, it's a molecular formula since it can be obtained by multiplying the empirical formula of the same compound.

B. 
It's an empirical formula since it cannot be obtained by the multiplication of a whole number and the simplest formula. It's the simplest formula that we can find of the compound.
C. 
It's not an empirical formula, it's a molecular formula since it can be obtained by multiplying the empirical formula of the same compound.

D. 
It's not an empirical formula, it's a molecular formula since it can be obtained by multiplying the empirical formula of the same compound.

Hence, the empirical formula is the option B. 
Have a nice day!
Therac-25, AECL was able to reduce costs by replacing hardware safety features with software controls.
the Therac-25 was a laptop-controlled radiation therapy machine produced by Atomic energy state Canada limited in 1982 after the Therac-6 and Therac-20 units. It was involved in at least six accidents between 1985 and 1987, in which patients were given massive overdoses state radiation.
The Therac-25 machine was a state-of-the-art linear accelerator developed by using the company Atomic strength Canada restricted (AECL) and a French company CGR to provide radiation treatment to cancer sufferers. The Therac-25 become the most computerized and complicated radiation therapy device state its time.
learn more about cancer here brainly.com/question/11710623
#SPJ4
Answer:
-191.7°C
Explanation:
P . V = n . R . T
That's the Ideal Gases Law. It can be useful to solve the question.
We replace data:
2.5 atm . 8 L = 3 mol . 0.082 L.atm/mol.K . T°
(2.5 atm . 8 L) / (3 mol . 0.082 L.atm/mol.K) = T°
T° = 81.3 K
We convert T° from K to C°
81.3K - 273 = -191.7°C
Answer:
3.49 g
Explanation:
The mass is the product of volume and density:
(8.96 g/cm³)(0.39 cm³) ≈ 3.49 g
The mass of a pure-copper penny would be 3.49 g.
I would be inclined to go with A, C and D