0N. The net force acting on this firework is 0.
The key to solve this problem is using the net force formula based on the diagram shown in the image. Fnet = F1 + F2.....Fn.
Based on the free-body diagram, we have:
The force of gases is Fgases = 9,452N
The force of the rocket Frocket = -9452
Then, the net force acting is:
Fnet = Fgases + Frocket
Fnet = 9,452N - 9,452N = 0N
Answer:
a. 5 × 10¹⁹ protons b. 2.05 × 10⁷ °C
Explanation:
Here is the complete question
A beam of protons is moving toward a target in a particle accelerator. This beam constitutes a current whose value is 0.42 A. (a) How many protons strike the target in 19 seconds? (b) Each proton has a kinetic energy of 6.0 x 10-12 J. Suppose the target is a 17-gram block of metal whose specific heat capacity is 860 J/(kg Co), and all the kinetic energy of the protons goes into heating it up. What is the change in temperature of the block at the end of 19 s?
Solution
a.
i = Q/t = ne/t
n = it/e where i = current = 0.42 A, n = number of protons, e = proton charge = 1.602 × 10⁻¹⁹ C and t = time = 19 s
So n = 0.42 A × 19 s/1.602 × 10⁻¹⁹ C
= 4.98 × 10¹⁹ protons
≅ 5 × 10¹⁹ protons
b
The total kinetic energy of the protons = heat change of target
total kinetic energy of the protons = n × kinetic energy per proton
= 5 × 10¹⁹ protons × 6.0 × 10⁻¹² J per proton
= 30 × 10⁷ J
heat change of target = Q = mcΔT ⇒ ΔT = Q/mc where m = mass of block = 17 g = 0.017 kg and c = specific heat capacity = 860 J/(kg °C)
ΔT = Q/mc = 30 × 10⁷ J/0.017 kg × 860 J/(kg °C)
= 30 × 10⁷/14.62
= 2.05 × 10⁷ °C
I think that the angular velocity vector points at right angles to the direction in which the wheels are turning (spindle on an old fashioned record player ?) and so at right angles to the direction the bike is moving in. This contributes to the gyroscope effect on the wheels and bike and allows a rapidly rotating wheel to be more stable than a slowly rotating one. Problem for the trainee cyclist is to believe that they are actually more stable when their wheels are moving quickly. 'cos the tendency is to go slowly to start with, which makes balancing harder.
But then, most cyclists, especially youngsters, don't sit down all day analysing circular motion vectors, which may be just as well.
Answer:
fossil fuels are composed of Carbon.
Answer:
B = E/c = 14.04T₁ = 11 pT
Explanation:
We know c = E/B where E = maximum electric field = 3.30 × 10⁻³ V/m, B = maximum magnetic field and c = speed of light
B = E/c also c = fλ = λ/T where λ = wavelength = 235 μm = 235 × 10⁻⁶ m and T = period
c = λ₁/T₁ = λ₂/T₂ T₂ = 2.8T₁ where λ₁,λ₂ are the initial and final wavelengths and T₁,T₂ are the initial and final periods.
T₁ = λ₁/c = 235 × 10⁻⁶ m/3 × 10⁸ m/s = 7.833 × 10⁻¹³ s = 0.7833 ps
T₂ = 2.8T₁ = 2.8 × 7.833 × 10⁻¹³ s = 21.93 × 10⁻¹³ s = 2.193 ps
λ₁/T₁ = λ₂/2.8T₁
λ₂ = 2.8λ₁ = 2.8 × 235 μm = 658 μm
c = λ₂/T₂ = 2.8λ₁/2.8T₁ = λ₁/T₁ , since the speed of light c is constant.
B = E/c = E/λ₁/T₁ = ET₁/λ₁
B = ET₁/λ₁ = 3.30 × 10⁻³ V/m × T₁/235 × 10⁻⁶ m = 14.04T₁ Tesla
B = 14.04 × 7.833 × 10⁻¹³ s = 10.99 × 10⁻¹² T ≅ 11 pT