In order to find the force (F), you would have to use the formula for it:
F=ma
where m is mass and a is acceleration.
In the problem, the mass is 2.85kg and the acceleration is 4.9m/s^2.
Therefore,
F=2.85kg(4.9m/s^2)
F=13.965kg(m/s^2)
Since N=kg(m/s^2)
F=13.965N
And because the problem requires that we use only 2 significant figures,
F=13N
Therefore, the student must exert 13N of force.
Answer:
Explanation:
As the final Kinetic energy is zero or less than initial kinetic energy, the collision must be inelastic.
In Inelastic collision both the bodies must stick together as final velocity is zero for both the bodies.
To conserve the momentum, momentum associated before the collision of first must be equal and opposite to the momentum associated with the second ball.
i.e.
Answer:
We are Given:
initial velocity (u) = 0m/s
final velocity (v) = 25 m/s
time (t) = 10 seconds
acceleration (a) = a m/s/s
From the first equation of motion, we know that:
v = u + at
solving for a, we get:
a = (v-u) / t
now, plugging the given values in this equation
a = (25 - 0) / 10
a = 25 / 10
a = 2.5 m/s/s
Therefore, the acceleration of the car is 2.5 m/s/s
Answer:
2.24 T
Explanation:
From Electromagnetic Field,
F = BILsin∅................ Equation 1
Where F = Force on the wire, B = Field strength, I = current flowing in the conductor, L = length of the conductor, ∅ = The angle the conductor makes with the magnetic field.
Making B the subject of the equation,
B = F/ILsin∅..................... Equation 2
Given: F = 2.15 N, I = 32 A, L = 3.00 cm = 0.03 m, ∅ = 90° ( the wire is perpendicular to the magnetic field)
Substitute into equation 2
B = 2.15/(32×0.03×sin90°)
B = 2.15/0.96
B = 2.24 T.
Hence the Field strength = 2.24 T
<u>Given;</u>
mass m = 75 kg
acceleration a = 24.5 ms²
<em>F = ma </em>
F = 75 kg * 24.5 ms²
= 1837.5 kg ms².