Answer: B) He has too many independent variables.
Explanation: Nothing in the experiment is a constant or being measured.
The correct answer is B) Ultraviolet light source. Hope this helps.
Answer:
CRUST, UPPER MANTLE, LOWER MANTLE, INNER CORE, OUTER CORE,
Explanation:
how do u not know this
Answer:
Explanation:
Given that,
Mass of first car
M1= 328kg
The car is moving in positive direction of x axis with velocity
U1 = 19.1m/s
Velocity of second car
U2 = 13m/s, in the same direction as the first car..
Mass of second car
M2 = 790kg
Velocity of second car after collision
V2 = 15.1 m/s
Velocity of first car after collision
V1 =?
This is an elastic collision,
And using the conservation of momentum principle
Momentum before collision is equal to momentum after collision
P(before) = P(after)
M1•U1 + M2•U2 = M1•V1 + M2•V2
328 × 19.1 + 790 × 13 = 328 × V1 + 790 × 15.1
16534.8 = 328•V1 + 11929
328•V1 = 16534.8—11929
328•V1 = 4605.8
V1 = 4605.8/328
V1 = 14.04 m/s
The velocity of the first car after collision is 14.04 m/s
Complete question is;
Jason works for a moving company. A 75 kg wooden crate is sitting on the wooden ramp of his truck; the ramp is angled at 11°.
What is the magnitude of the force, directed parallel to the ramp, that he needs to exert on the crate to get it to start moving UP the ramp?
Answer:
F = 501.5 N
Explanation:
We are given;
Mass of wooden crate; m = 75 kg
Angle of ramp; θ = 11°
Now, for the wooden crate to slide upwards, it means that the force of friction would be acting in an opposite to the slide along the inclined plane. Thus, the force will be given by;
F = mgsin θ + μmg cos θ
From online values, coefficient of friction between wooden surfaces is μ = 0.5
Thus;
F = (75 × 9.81 × sin 11) + (0.5 × 75 × 9.81 × cos 11)
F = 501.5 N