Answer:
El gasto de gasto es de aproximadamente 0.0273 pies cúbicos por segundo.
Explanation:
El gasto es el flujo volumétrico de gasolina (
), medido en pies cúbicos por segundo, que sale de la manguera. Asumiendo que la velocidad de salida es constante, tenemos que el gasto a través de la manguera es:
(1)
Donde:
- Diámetro de la manguera, medido en pies.
- Velocidad medida de salida, medida en pies por segundo.
Si sabemos que
y
, entonces el gasto de gasolina es:


El gasto de gasto es de aproximadamente 0.0273 pies cúbicos por segundo.
Answer:
Impulse of force = -80 Ns
Explanation:
<u>Given the following data;</u>
Mass = 50kg
Initial velocity = 1.6m/s
Since she glides to a stop, her final velocity equals to zero (0).
Now, we would find the change in velocity.
Substituting into the equation above;
Change in velocity = 0 - 1.6 = 1.6m/s
Substituting into the equation, we have;
<em>Impulse of force = -80 Ns</em>
<em>Therefore, the impulse of the force that stops her is -80 Newton-seconds and it has a negative value because it is working in an opposite direction, thus, bringing her to a stop. </em>
I think the answer is 4) All of the above!! :)
1) Plates movement happens very slowly.
2) The earth's lithosphere is divided into pieces
3) they are caused by convection currents in the asthenosphere (upper mantle)
Answer:
The number density of the gas in container A is twice the number density of the gas in container B.
Explanation:
Here we have
P·V =n·R·T
n = P·V/(RT)
Therefore since V₁ = V₂ and T₁ = T₂
n₁ = P₁V₁/(RT₁)
n₂ = P₂V₂/(RT₂)
P₁ = 4 atm
P₂ = 2 atm
n₁ = 4V₁/(RT₁)
n₂ =2·V₁/(RT₁)
∴ n₁ = 2 × n₂
Therefore, the number of moles in container A is two times that in container B and the number density of the gas in container A is two times the number density in container B.
This can be shown based on the fact that the pressure of the container is due to the collision of the gas molecules on the walls of the container, with a kinetic energy that is dependent on temperature and mass, and since the temperature is constant, then the mass of container B is twice that of A and therefore, the number density of container A is twice that of B.