Answer:
They have electrons in their 3d- and 4s-orbital for bond formation.
Explanation:
d- metals or transition metal are metal which form ion with partially filled d-orbital. Examples are iron and manganese.
The metals have 2 electrons in their 4s orbital. If only this is used for bonding, they will form compounds where they have oxidation State of +2 as seen in MnO.
If two 4s and one of 3d electrons are used, oxidation state of +3 is formed as seen in FeCl3.
If two 2s electron I used with two 3d electrons, compound with oxidation state of +4 is formed as seen in MnO2
Percent composition by mass is calculated (mass of element within compound)/(mass of compound)*100. The lower the total molar mass of the compound, the greater the percent composition of sulfur. In this case, MgS would be that compound, since Mg has the lowest molar mass of the four elements bonded to S.
It's a combination of factors:
Less electrons paired in the same orbital
More electrons with parallel spins in separate orbitals
Pertinent valence orbitals NOT close enough in energy for electron pairing to be stabilized enough by large orbital size
DISCLAIMER: Long answer, but it's a complicated issue, so... :)
A lot of people want to say that it's because a "half-filled subshell" increases stability, which is a reason, but not necessarily the only reason. However, for chromium, it's the significant reason.
It's also worth mentioning that these reasons are after-the-fact; chromium doesn't know the reasons we come up with; the reasons just have to be, well, reasonable.
The reasons I can think of are:
Minimization of coulombic repulsion energy
Maximization of exchange energy
Lack of significant reduction of pairing energy overall in comparison to an atom with larger occupied orbitals
COULOMBIC REPULSION ENERGY
Coulombic repulsion energy is the increased energy due to opposite-spin electron pairing, in a context where there are only two electrons of nearly-degenerate energies.
So, for example...
↑
↓
−−−−−
↑
↓
−−−−−
↑
↓
−−−−− is higher in energy than
↑
↓
−−−−−
↓
↑
−−−−−
↑
↓
−−−−−
To make it easier on us, we can crudely "measure" the repulsion energy with the symbol
Π
c
. We'd just say that for every electron pair in the same orbital, it adds one
Π
c
unit of destabilization.
When you have something like this with parallel electron spins...
↑
↓
−−−−−
↑
↓
−−−−−
↑
↓
−−−−−
It becomes important to incorporate the exchange energy.
EXCHANGE ENERGY
Exchange energy is the reduction in energy due to the number of parallel-spin electron pairs in different orbitals.
It's a quantum mechanical argument where the parallel-spin electrons can exchange with each other due to their indistinguishability (you can't tell for sure if it's electron 1 that's in orbital 1, or electron 2 that's in orbital 1, etc), reducing the energy of the configuration.
For example...
↑
↓
−−−−−
↑
↓
−−−−−
↑
↓
−−−−− is lower in energy than
↑
↓
−−−−−
↓
↑
−−−−−
↑
↓
−−−−−
To make it easier for us, a crude way to "measure" exchange energy is to say that it's equal to
Π
e
for each pair that can exchange.
So for the first configuration above, it would be stabilized by
Π
e
(
1
↔
2
), but the second configuration would have a
0
Π
e
stabilization (opposite spins; can't exchange).
PAIRING ENERGY
Pairing energy is just the combination of both the repulsion and exchange energy. We call it
Π
, so:
Π
=
Π
c
+
Π
e
Inorganic Chemistry, Miessler et al.
Inorganic Chemistry, Miessler et al.
Basically, the pairing energy is:
higher when repulsion energy is high (i.e. many electrons paired), meaning pairing is unfavorable
lower when exchange energy is high (i.e. many electrons parallel and unpaired), meaning pairing is favorable
So, when it comes to putting it together for chromium... (
4
s
and
3
d
orbitals)
↑
↓
−−−−−
↑
↓
−−−−−
↑
↓
−−−−−
↑
↓
−−−−−
↑
↓
−−−−−
↑
↓
−−−−−
compared to
↑
↓
−−−−−
↑
↓
−−−−−
↑
↓
−−−−−
↑
↓
−−−−−
↑
↓
−−−−−
↑
↓
−−−−−
is more stable.
For simplicity, if we assume the
4
s
and
3
d
electrons aren't close enough in energy to be considered "nearly-degenerate":
The first configuration has
Π
=
10
Π
e
.
(Exchanges:
1
↔
2
,
1
↔
3
,
1
↔
4
,
1
↔
5
,
2
↔
3
,
2
↔
4
,
2
↔
5
,
3
↔
4
,
3
↔
5
,
4
↔
5
)
The second configuration has
Π
=
Π
c
+
6
Π
e
.
(Exchanges:
1
↔
2
,
1
↔
3
,
1
↔
4
,
2
↔
3
,
2
↔
4
,
3
↔
4
)
Technically, they are about
3.29 eV
apart (Appendix B.9), which means it takes about
3.29 V
to transfer a single electron from the
3
d
up to the
4
s
.
We could also say that since the
3
d
orbitals are lower in energy, transferring one electron to a lower-energy orbital is helpful anyways from a less quantitative perspective.
COMPLICATIONS DUE TO ORBITAL SIZE
Note that for example,
W
has a configuration of
[
X
e
]
5
d
4
6
s
2
, which seems to contradict the reasoning we had for
Cr
, since the pairing occurred in the higher-energy orbital.
But, we should also recognize that
5
d
orbitals are larger than
3
d
orbitals, which means the electron density can be more spread out for
W
than for
Cr
, thus reducing the pairing energy
Π
.
That is,
Π
W
Answer:
The electronic configuration that are incorrectly written is 1s²2s³2p⁶, 4s²3d¹⁰4p⁷, 3s¹ and 2s²2p⁴.
Explanation:
The electronic configuration of the elements corresponds to how all the electrons of an element are arranged in energy levels and sub-levels.
There are 7 energy levels —from 1 to 7— whose sublevels are described as s, p, d and f.
All electronic configurations begin with the term "1s" —corresponding to the sublevel s of level 1— so 4s²3d¹⁰4p⁷, 3s¹ and 2s²2p⁴ are incorrectly written. In addition, 4s²3d¹⁰4p⁷ is written incorrectly because is impossible to jump from the sublevel "s" to the sublevel "d" —which is found from level 3 and up— without passing through the sublevel "p".
In the case of 1s²2s³2p⁶, the wrong thing is that the sublevel "s" can only hold two electrons, not three.
The other options are correctly written.
The answer is 18.23432 grams.
Molar mass of KOH= 56.1056

= 18.234 grams