Answer:
82.416 g of KNO
₃ is needed to produce 510.0 mL of a 1.6 M KNO
₃ solution.
Explanation:
Since molarity is the number of moles of solute that are dissolved in a given volume, calculated by dividing the moles of solute by the volume of the solution, the following rule of three can be applied: if in 1 L (1,000 mL) of KNO₃ there are 1.6 moles of the compound present, in 510 mL how many moles will there be?

moles= 0.816
Being the molar mass of the elements:
- K: 39 g/mole
- N: 14 g/mole
- O: 16 g/mole
So the molar mass of the compound KNO₃ is:
KNO₃= 39 g/mole + 14 g/mole + 3*16 g/mole= 101 g/mole
Now I can apply the following rule of three: if in 1 mole of KNO₃ there are 101 g, in 0.816 moles how much mass is there?

mass= 82.416 grams
<u><em>82.416 g of KNO
₃ is needed to produce 510.0 mL of a 1.6 M KNO
₃ solution.</em></u>
Answer:
pH of HNO₃ having an hydrogen ion concentration of 0.71M is 0.149
Explanation:
HNO₃ (aqueous) ⇄ H⁺ + NO3⁻
The pH is defined as the negative log of the hydrogen ion concentration
pH = - log [H⁺]
From the question, the hydrogen ion concentration is given as 0.71M, therefore
pH = -log [0.71]
= 0.149
Answer:
When an atom gains/loses an electron, the atom becomes charged, and is called an ion. Gaining an electron results in a negative charge, so the atom is an anion
The bromide concentration in this solution of calcium bromide dissolved in enough water to give 469.1 mL is 1.75 × 10-⁵M.
<h3>How to calculate concentration?</h3>
The concentration of a solution can be calculated by dividing the number of moles of the substance by its volume.
No of moles of calcium bromide is calculated as follows:
moles = 1.642 ÷ 199.89 = 8.215 × 10-³moles
Molarity = 8.215 × 10-³moles ÷ 469.1mL = 1.75 × 10-⁵M
Therefore, the bromide concentration in this solution of calcium bromide dissolved in enough water to give 469.1 mL is 1.75 × 10-⁵M.
Learn more about concentration at: brainly.com/question/10725862
#SPJ1