The answer is false. u can still round if # is a decimal
Answer: Theoretical yield is 313.6 g and the percent yield is, 91.8%
Explanation:
To calculate the moles :


According to stoichiometry :
1 mole of
require 3 moles of 
Thus 2.8 moles of
will require=
of 
Thus
is the limiting reagent as it limits the formation of product and
is the excess reagent.
As 1 mole of
give = 2 moles of 
Thus 2.8 moles of
give =
of 
Mass of 
Theoretical yield of liquid iron = 313.6 g
Experimental yield = 288 g
Now we have to calculate the percent yield

Therefore, the percent yield is, 91.8%
Answer: A.
Explanation:
Brownian motion is the random motion of a particle as a result of collisions with surrounding gaseous molecules. Diffusiophoresis is the movement of a group of particles induced by a concentration gradient. This movement always flows from areas of high concentration to areas of low concentration.
Example: The movement of pollen grains on still water. Motion of dust motes in a room (though largely influenced by air currents).
Covalent bonds are formed when 2 neutral atoms come together to share a pair of electrons, where each atom contributes one electron each to be shared.
The covalent bond is kept together by the electrostatic attraction between the nuclei of the atoms and the shared pair of electrons.
Covalent bonds are usually formed between non metals with a small difference in their electro negativity.
the correct answer is
A. Neutral atoms coming together to share electrons
Answer:
The dissociation constant of phenol from given information is
.
Explanation:
The measured pH of the solution = 5.153

Initially c
At eq'm c-x x x
The expression of dissociation constant is given as:
![K_a=\frac{[C_6H_5O^-][H^+]}{[C_6H_5OOH]}](https://tex.z-dn.net/?f=K_a%3D%5Cfrac%7B%5BC_6H_5O%5E-%5D%5BH%5E%2B%5D%7D%7B%5BC_6H_5OOH%5D%7D)
Concentration of phenoxide ions and hydrogen ions are equal to x.
![pH=-\log[x]](https://tex.z-dn.net/?f=pH%3D-%5Clog%5Bx%5D)
![5.153=-\log[x]](https://tex.z-dn.net/?f=5.153%3D-%5Clog%5Bx%5D)



The dissociation constant of phenol from given information is
.