Answer:
The system's potential energy is -147 J.
Explanation:
Given that,
Energy = 147 J
We know that,
System is isolated and it is free from external forces.
So, the work done by the external forces on the system should be equal to zero.

We need to calculate the system's potential energy
Using thermodynamics first equation

Put the value into the formula


Hence, The system's potential energy is -147 J.
Answer:
Mechanical Energy
Explanation:
The sum of kinetic energy and potential energy of an object is its total mechanical energy.
Answer:
The ratio is KE : TM = 0.75
Explanation:
from the question we are told that
The displacement of a mass on a spring in simple harmonic motion is A/2 from the equilibrium position
Generally the total mechanical energy of the mass is mathematically represented as

Here k is the spring constant , A is the total displacement of the the mass from maximum compression to maximum extension of the spring
Generally this total mechanical energy is mathematically represented as

=> 
Here the potential energy of the mass is mathematically represented as
![PE = \frac{1}{ 2} * k * [ x ]^2](https://tex.z-dn.net/?f=PE%20%20%20%3D%20%5Cfrac%7B1%7D%7B%202%7D%20%20%2A%20%20k%20%2A%20%20%5B%20x%20%5D%5E2)
Here x is the displacement of the mass from maximum compression or extension of the spring to equilibrium position and the value is

So
![PE = \frac{1}{ 2} * k * [ \frac{A}{2} ]^2](https://tex.z-dn.net/?f=PE%20%20%20%3D%20%5Cfrac%7B1%7D%7B%202%7D%20%20%2A%20%20k%20%2A%20%20%5B%20%5Cfrac%7BA%7D%7B2%7D%20%20%5D%5E2)
So
![KE = \frac{1}{2} * k * A^2 - \frac{1}{2} * k * [\frac{A}{2} ]^2](https://tex.z-dn.net/?f=KE%20%3D%20%20%5Cfrac%7B1%7D%7B2%7D%20%20%2A%20%20k%20%20%2A%20%20A%5E2%20-%20%5Cfrac%7B1%7D%7B2%7D%20%20%2A%20%20k%20%20%2A%20%20%5B%5Cfrac%7BA%7D%7B2%7D%20%5D%5E2)
=> 
=> 
So the ratio of
is mathematically represented as

=>
Answer:
25 cm²
Explanation:
Meters and centimeters are both the units for measuring length. The SI unit of measuring length is meters.
Area is the quantity which measures the cross-section occupied by the object.
Thus,
Given that = Area = 0.0025 m²
To convert into cm²
1 m = 100 cm
So, 1 m² = 10000 cm²
So,
<u>Area = 0.0025 × 10000 cm² = 25 cm²</u>
A) the periodic time is given by the equation;
T= 2π√(L/g)
For the frequency will be obtained by 1/T (Hz)
T = 2 × 3.14 √ (0.66/9.81)
= 6.28 × √0.0673
= 1.6289 Seconds
Frequency = 1/T = f = 1/1.6289
thus; frequency = 0.614 Hz
b) The vertical distance, the height is given by
h= 0.66 cos 12
h = 0.65 m
Vertical fall at the lowest point = 0.66 - 0.65 = 0.01 m
Applying conservation of energy
energy lost (MgΔh) = KE gained (1/2mv²)
mgh = 1/2mv²
v² = 2gΔh = 2×9.81 × 0.01
= 0.1962
v = 0.443 m/s
c) total energy = KE + GPE = KE when GPE is equal to zero (at the lowest point possible)
Thus total energy is equal to;
E = 1/2mv²
= 1/2 × 0.310 × 0.443²
= 0.0304 J