First, let's take a look at the equation for the force of gravity between two objects:
F = (GMm)/r², where,
G = gravitational constant = 6.67 x 10⁻¹¹
M = mass of one object
m = mass of the other object
r = distance between the two objects
From this equation, we can see that the force of gravity is directly proportional to the mass of the two objects and inversely proportional to the distance between them. We can then say that the Earth is <span>more attracted to the sun than the moon because of the massive mass of the Sun (1.9891 x 10</span>³⁰)<span> compared to moon (7.3577 x 10</span>²²<span>). Although, the moon is nearer to the Earth, it has little effect to bring down the gravitational pull of the Sun. </span>
Answer:
Explanation:
25 mm diameter
r₁ = 12.5 x 10⁻³ m radius.
cross sectional area = a₁
Pressure P₁ = 100 x 10⁻³ x 13.6 x 9.8 Pa
a )
velocity of blood v₁ = .6 m /s
Cross sectional area at blockade = 3/4 a₁
Velocity at blockade area = v₂
As liquid is in-compressible
a₁v₁ = a₂v₂
a₁ x .6 m /s = 3/4 a₁ v₂
v₂ = .8m/s
b )
Applying Bernauli's theorem formula
P₁ + 1/2 ρv₁² = P₂ + 1/2 ρv₂²
100 x 10⁻³ x 13.6 x10³x 9.8 + 1/2 X 1060 x .6² = P₂ + 1/2x 1060 x .8²
13328 +190.8 = P₂ + 339.2
P₂ = 13179.6 Pa
= 13179 / 13.6 x 10³ x 9.8 m of Hg
P₂ = .09888 m of Hg
98.88 mm of Hg
Well,
For the first one, the answer would be C, because all organisms in Kingdom Animalia must eat in order to survive.
For the second one, all of the options are in Kingdom Animalia, but worms (A) and clams (C) are invertebrates. So that leaves options B and D.
Answer:
I think is 2.
Explanation:
(The entire range of wavelengths or frequencies of electromagnetic radiation extending from gamma rays to the longest radio waves and including visible light)