Answer:

Explanation:
The law of conservation of angular momentum states that angular momentum remains constant when there is no external moment or forces applied to the system. Let assume that star can be modelled as an sphere, then:

The final angular speed is:



The horizontal component of the velocity of the ball is calculated by multiplying the speed by the cosine of the given angle.
x-component of speed = (31 m/s)(cos 35°)
= 25.39 m/s
Thus, the horizontal velocity component of the ball is 25.39 m/s.
Answer:
86605.08 N
Explanation:
The equation to calculate the force is:
Force = mass * acceleration
The force and the acceleration does not have the same direction in this case, so we need to decompose the force into its horizontal component, which is the force that will generate the horizontal acceleration:
Force_x = Force * cos(30)
Then, we have that:
Force_x = mass * acceleration
Force * cos(30) = 25000 * 3
Force * 0.866 = 75000
Force = 75000 / 0.866 = 86605.08 N
Answer:
Explanation:
The image is real light rays actually focus at the image location). As the object moves towards the mirror the image location moves further away from the mirror and the image size grows (but the image is still inverted).
Energy consumed in doing the work = 300 Joules
Force applied on the object = 75 N
Let the distance moved by the object be d.
Work done by the force is determined by the force applied and the displacement happened in the direction of the force applied.
Work done = Force x displacement
300 = 75 x d

d = 4 m
Hence, the maximum distance moved by the object = 4 meters