Answer: 
Explanation:
Given
Length of plank is 1.6 m
Force
is applied on the left side of plank
Force
is applied 43 cm from the left end O.
Mass of the plank is 
for equilibrium
Net torque must be zero. Taking torque about left side of the plank

Net vertical force must be zero on the plank

Answer:
– 2.5 m/s²
Explanation:
We have,
• Initial velocity, u = 180 km/h = 50 m/s
• Final velocity, v = 0 m/s (it stops)
• Time taken, t = 20 seconds
We have to find acceleration, a.
a = (v ― u)/t
a = (0 – 50)/20 m/s²
a = –50/20 m/s²
a = – 5/2 m/s²
a = – 2.5 m/s² (Velocity is decreasing) [Answer]
Answer:
Final speed of the car, v = 24.49 m/s
Explanation:
It is given that,
Initial velocity of the car, u = 0
Acceleration, 
Time taken, t = 7.9 s
We need to find the final velocity of the car. Let it is given by v. It can be calculated using first equation of motion as :

v = 24.49 m/s
So, the final speed of the car is 24.49 m/s. Hence, this is the required solution.
Given :
The focal length of a concave mirror is 18 cm.
To Find :
The radius of curvature of the concave mirror.
Solution :
We know,

Therefore, the radius of curvature of concave mirror is 36 cm.
Hence, this is the required solution.