When a beta particle<span> is emitted from the nucleus the nucleus has one more proton and one less neutron. This means the atomic mass number remains unchanged and the atomic number increases by 1.
We can also say that </span>beta decay<span> is a type of radioactive </span>decay<span> in which a proton is transformed into a neutron inside an atomic nucleus.
</span><span>a) converts a neutron into a proton</span>
The reaction given is:
4Ga + P4 ---> 4GaP
The oxidation number of the reactants is zero, because they are pure elements.
The P in compounds may have oxidation states 3- or 5-. Gallium may only have oxidation state 3+.
Then, to be neutral in GaP the oxidation states are 3+ for Ga and 3- for P.
And the transference of electrons can be see in this oxidation - reduction equations:
Ga (0) - 3 e- ----> Ga (3+)
P (0) + 3e- ---> P (3-)
So, for one formula unit, 3 electrons have been transfered from each Ga atom to P atom to form one GaP unit.
Answer: 3 electrons.
A.
H₃C-CH₃
this is called ethane
B.
H₃C-CH₂-CH₂-CH₃
this is called butane
C.H₃C-CH₂-CH₂-CH₂-CH₂-CH₃
this is called hexane
D.
H₃C-CH₂-CH₂-CH₂-CH₂-CH₂-CH₃
this is called heptane
Answer:
648.5 mL
Explanation:
Here we will assume that the pressure of the gas is constant, since it is not given or specified.
Therefore, we can use Charle's law, which states that:
"For an ideal gas kept at constant pressure, the volume of the gas is proportional to its absolute temperature"
Mathematically:

where
V is the volume of the gas
T is its absolute temperature
The equation can be rewritten as

where in this problem we have:
is the initial volume of the gas
is the initial temperature
is the final temperature
Solving for V2, we find the final volume of the gas:
