The pressure exerted by a liquid on an object increases as we go more deep into the liquid and this pressure is called as hydro static pressure . if we consider a part of the static fluid then all the horizontal forces will cancel out while the vertical forces will add vectorilly and due to which a pressure difference is created . so as we go more deep the pressure increase .
Now pressure is a scalar so it does not depend on direction but when two objects are on the same level with respect to a reference level then the pressure exerted on them by fluid is always the same . hope this helps
Answer:
ω = 3.61 rad/sec
Explanation:
Firstly, we should know that the bug will not slip if friction can provide sufficient opposing force.
μmg = mv^2/r = mω^2r
Thus;
μg = ω^2r
ω^2 = μg/r
ω = √(μg/r)
ω = √(0.321 * 9.8)/0.241
ω = √(13.05)
= 3.61 rad/sec
Answer:
this is a good suggestion
Explanation:
when the sugar cubes are crushed and they become a powder so its surface area increases. And as surface area is directly proportional to rate of reaction so the desired solution will be formed rapidly
Use your feet to stop it since it is soccer you can't use your hands!!!! P.S. you can't use gravity.
<h2>
Answer: Doppler effect
</h2>
Explanation:
A radar gun (also known as a Doppler radar) uses the Doppler effect when measuring "return echoes" after having sent a microwave signal (a type of electromagnetic radiation).
In this context the Doppler effect consists of the change in a wave perceived frequency when the emitter of the waves, and the observer move relative to each other.
In the case of radars, a microwave signal is sent to a target (the tennis or baseball in this case) and then is reflected after "hitting" the target, so that the radar system measures this difference between the sent signal and the reflected signal.