In one of the most amazing coincidences in all of science,
the part of the electromagnetic spectrum that's visible to the
human eye is called "visible light".
Visible light is not 'divided' into anything. We mention the names
to seven of the colors in visible light. But all of the thousands of
OTHER colors that we can see are in there too, even though we
don't bother to list their names when we buzz through the rainbow
in the third grade.
Answer:
the mass of water is 0.3 Kg
Explanation:
since the container is well-insulated, the heat released by the copper is absorbed by the water , therefore:
Q water + Q copper = Q surroundings =0 (insulated)
Q water = - Q copper
since Q = m * c * ( T eq - Ti ) , where m = mass, c = specific heat, T eq = equilibrium temperature and Ti = initial temperature
and denoting w as water and co as copper :
m w * c w * (T eq - Tiw) = - m co * c co * (T eq - Ti co) = m co * c co * (T co - Ti eq)
m w = m co * c co * (T co - Ti eq) / [ c w * (T eq - Tiw) ]
We take the specific heat of water as c= 1 cal/g °C = 4.186 J/g °C . Also the specific heat of copper can be found in tables → at 25°C c co = 0.385 J/g°C
if we assume that both specific heats do not change during the process (or the change is insignificant)
m w = m co * c co * (T eq - Ti co) / [ c w * (T eq - Tiw) ]
m w= 1.80 kg * 0.385 J/g°C ( 150°C - 70°C) /( 4.186 J/g°C ( 70°C- 27°C))
m w= 0.3 kg
The acceleration is -9.8m/s^2. The initial velocity is -8m/s. The initial position is 30m. This describes a position function of
-(9.8/2)t^2-8t+30=0
Solve the quadratic equation for t to get t=1.789s
Answer:

Explanation:
Hi!
The perpendicular distance 2.4cm, is much less than the distance to both endpoints of the wire, which is aprox 1m. Then the edge effect is negligible at this field point, and we can aproximate the wire as infinitely long.
The electric filed of an infinitely long wire is easy to calculate. Let's call z the axis along the wire. Because of its simmetry (translational and rotational), the electric field E must point in the radial direction, and it cannot depende on coordinate z. To calculate the field Gauss law is used, as seen in the image, with a cylindrical gaussian surface. The result is:

Then the electric field at the point of interest is estimated as:
