Answer:
option D
Explanation:
given,
length of the pipe, L = 0.96 m
Speed of sound,v = 345 m/s
Resonating frequency when both the end is open

n is the Harmonic number
2nd overtone = 3rd harmonic
so, here n = 3
now,

f = 540 Hz
The common resonant frequency of the string and the pipe is closest to 540 Hz.
the correct answer is option D
I think it's an hour and a half
Answer:
The direction of the displacement is in North-West.
Explanation:
Resultant displacement D is
Here the direction is

Then the direction is
North-west.
Here's what you need to know about waves:
Wavelength = (speed) / (frequency)
Now ... The question gives you the speed and the frequency,
but they're stated in unusual ways, with complicated numbers.
Frequency: How many each second ?
The thing that's making the waves is vibrating 47 times in 26.9 seconds.
Frequency = (47) / (46.9 s) = 1.747... per second. (1.747... Hz)
Speed: How far a point on a wave travels in 1 second.
The crest of one wave travels 4.16 meters in 13.7 seconds.
Speed = (4.16 m / 13.7 sec) = 0.304... m/s
Wavelength = (speed) / (frequency)
Wavelength = (0.304 m/s) / (1.747 Hz) = 0.174 meter per second