Here's a formula that's simple and useful, and if you're really in
high school physics, I'd be surprised if you haven't see it before.
This one is so simple and useful that I'd suggest memorizing it,
so it's always in your toolbox.
This formula tells how far an object travels in how much time,
when it's accelerating:
Distance = (1/2 acceleration) x (Time²).
D = 1/2 A T²
For your student who dropped an object out of the window,
Distance = 19.6 m
Acceleration = gravity = 9.8 m/s²
D = 1/2 G T²
19.6 = 4.9 T²
Divide each side by 4.9 : 4 = T²
Square root each side: 2 = T
When an object is dropped in Earth gravity,
it takes 2 seconds to fall the first 19.6 meters.
Answer:
Explanation:
Given
acceleration is given by

where 

Also acceleration is given by








at 





when air drag is neglected maximum height reached is


<span>The line that is drawn perpendicular to the point at which a wave intersects a boundary is know as the Normal .
When the normal is drawn, the incident ray makes an angle with it known as the angle of incidence and the reflected ray makes an angle with it known as the angle of incidence. These angles are always equal.
The refracted ray makes an angle with the normal known as angle of refraction. The sin of angle of incidence to the sin of angle of refraction is called the refractive index( </span>μ= <span>sin i / sin r) .
hope all of it helps you!</span>
Answer:
a) 
b) The second runner will win
c) d = 10.54m
Explanation:
For part (a):

For part (b) we will calculate the amount of time that takes both runners to cross the finish line:


Since it takes less time to the second runner to cross the finish line, we can say the she won the race.
For part (c), we know how much time it takes the second runner to win, so we just need the position of the first runner in that moment:
X1 = V1*t2 = 239.46m Since the finish line was 250m away:
d = 250m - 239.46m = 10.54m
Answer:

Explanation:
From the question we are told that
Weight 
Altitude 
Speed 
Generally the equation for Potential energy ids mathematically given as



