The distance covered by car is equal to (assuming it is moving by uniform motion) the product between the car's speed and the time of the car ride, 4 h:

where

is the car's speed

is the duration of the car ride
Similarly, the distance covered by train is equal to the product between the train's speed and the duration of the train ride, 7 h:

The total distance covered is S=255 km, which is the sum of the distances covered by car and train:

which becomes

(1)
we also know that the train speed is 5 km/h greater than the car's speed:

(2)
If we put (2) into (1), we find

and if we solve it, we find


So, the car speed is 20 km/h and the train speed is 25 km/h.
Water freezes at the freezing point to ice then melts to the melting turning it to liquid and vapor causing gas in precipitation
1. Traveling by car means you have specific roads to follow. You won’t be able to go straight to Banning high from POLAHS. The 8.4km will be defined as distance. Traveling by helicopter you don’t have roads to follow that means you can fly directly to banning high. 6.8km will be defined as displacement.
2. A) 400m
B)0m
C)d=1/2(vi+vf)t
400=1/2(0+vf)92
8.7m/s
D) 0m/s
E) Not sure but instantaneous velocity refer to velocity at a given point. Average velocity is just the average. Usually instantaneous velocity won’t be same as the average velocity.
Plz like if it helped.
Answer: The answer is A for sure
Explanation:
That is, there will be no acceleration. If you are sitting at rest in a chair and the upward push of the chair is equal to the downward pull of gravity, you will stay at rest in the chair. ... You now have an unbalanced force acting on you and therefore, according to Newton's First Law, your motion is going to change.
Plz give brainlest :)
Answer:
Second Trial satisfy principle of conservation of momentum
Explanation:
Given mass of ball A and ball B 
Let mass of ball
and
Final velocity of ball 
Final velocity of ball 
initial velocity of ball 
Initial velocity of ball 
Momentum after collision 
Momentum before collision 
Conservation of momentum in a closed system states that, moment before collision should be equal to moment after collision.
Now, 
Plugging each trial in this equation we get,
First Trial

momentum before collision
moment after collision
Second Trial

moment before collision
moment after collision
Third Trial

momentum before collision
moment after collision
Fourth Trial

momentum before collision
moment after collision
We can see only Trial- 2 shows the conservation of momentum in a closed system.