Answer:
Step-by-step explanation:
Given is a differential equation as

Divide this by t to get in linear form

This is of the form
y' +p(t) y = Q(t)
where p(t) = 1/t
So solution would be

siubstitute y(1) = 16

First, by using the distance formula for just one side, we can find the length of all sides (a square has 4 equal sides.) Then, we can apply the area of a square formula, which is a^2.
Distance formula:

√((-2 + 5)^2 + (-8 + 4)^2)
√((3)^2 + (4)^2)
√9 + 16
√25
5
The side lengths of the square are each equal to 5, and by applying the formula for area, we can find the area of the square.
5^2 = 25
<h3>The area is 25.</h3>
Pi is an irrational number meaning it has no end, 3.14 is just an estimate which means that it is not accurate.
204, because each day 6 goes up, so 34 x 6 = 204. Hope this helps :)
Let's begin by listing the first few multiples of 4: 4, 8, 12, 16, 20, 24, 28, 32, 36, 38, 40, 44. So, between 1 and 37 there are 9 such multiples: {4, 8, 12, 16, 20, 24, 28, 32, 36}. Note that 4 divided into 36 is 9.
Let's experiment by modifying the given problem a bit, for the purpose of discovering any pattern that may exist:
<span>How many multiples of 4 are there in {n; 37< n <101}? We could list and then count them: {40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92, 96, 100}; there are 16 such multiples in that particular interval. Try subtracting 40 from 100; we get 60. Dividing 60 by 4, we get 15, which is 1 less than 16. So it seems that if we subtract 40 from 1000 and divide the result by 4, and then add 1, we get the number of multiples of 4 between 37 and 1001:
1000
-40
-------
960
Dividing this by 4, we get 240. Adding 1, we get 241.
Finally, subtract 9 from 241: We get 232.
There are 232 multiples of 4 between 37 and 1001.
Can you think of a more straightforward method of determining this number? </span>