Answer:
The net force is zero.
Explanation:
Two opposing and equal forces cancel each other out, giving you a net force of zero.
Answer:
the bowling ball, because it has more mass and therefore more inertia
Explanation:
As per law of inertia we know that if an object is having more inertia then it is difficult to change state of motion.
Inertia is the property of mass of an object which always resist to change the state of motion of the object.
If an object has more inertia then it is more difficult to change the state of motion.
Now we know that we have one bowling ball and one basket ball, since bowling ball is having more mass then it must have more inertia so it is difficult to start the motion in bowling ball.
So correct answer will be
the bowling ball, because it has more mass and therefore more inertia
Answer:
62.8 μC
Explanation:
Here is the complete question
The volume electric charge density of a solid sphere is given by the following equation: ρ = (0.2 mC/m⁵)r²The variable r denotes the distance from the center of the sphere, in spherical coordinates. What is the net electric charge (in μC) of the sphere if the radius of the sphere is 0.5 m?
Solution
The total charge on the sphere Q = ∫∫∫ρdV where ρ = volume charge density = 0.2r² and dV = volume element in spherical coordinates = r²sinθdθdrdΦ
So, Q = ∫∫∫ρdV
Q = ∫∫∫ρr²sinθdθdrdΦ
Q = ∫∫∫(0.2r²)r²sinθdθdrdΦ
Q = ∫∫∫0.2r⁴sinθdθdrdΦ
We integrate from r = 0 to r = 0.5 m, θ = 0 to π and Φ = 0 to 2π
So, Q = ∫∫∫0.2r⁴sinθdθdrdΦ
Q = ∫∫∫0.2r⁴[∫sinθdθ]drdΦ
Q = ∫∫0.2r⁴[-cosθ]drdΦ
Q = ∫∫0.2r⁴-[cosπ - cos0]drdΦ
Q = ∫∫∫0.2r⁴-[-1 - 1]drdΦ
Q = ∫∫0.2r⁴-[- 2]drdΦ
Q = ∫∫0.2r⁴(2)drdΦ
Q = ∫∫0.4r⁴drdΦ
Q = ∫0.4r⁴dr∫dΦ
Q = ∫0.4r⁴dr[Φ]
Q = ∫0.4r⁴dr[2π - 0]
Q = ∫0.4r⁴dr[2π]
Q = ∫0.8πr⁴dr
Q = 0.8π∫r⁴dr
Q = 0.8π[r⁵/5]
Q = 0.8π[(0.5 m)⁵/5 - (0 m)⁵/5]
Q = 0.8π[0.125 m⁵/5 - 0 m⁵/5]
Q = 0.8π[0.025 m⁵ - 0 m⁵]
Q = 0.8π[0.025 m⁵]
Q = (0.02π mC/m⁵) m⁵
Q = 0.0628 mC
Q = 0.0628 × 10⁻³ C
Q = 62.8 × 10⁻³ × 10⁻³ C
Q = 62.8 × 10⁻⁶ C
Q = 62.8 μC
Answer:
Moving a unit "positive" test charge from A to B will result in a reduction in potential
V = K Q / R potential at a point
V2 - V1 = K Q (1 / .4 - 1 / .15) = = k Q (.15 - .4) / .06 = -4.17 K Q
V2 - V1 = -4.17 * 9 & 10E9 * 6.25 E-8
V2 - V1 = -4.17 * 562.5 J/C
V = - 2346 Volts
Answer:
The heat is 115478.4 J.
Explanation:
Given that,
Mass of water = 0.400 kg
Power = 200 W
Suppose, we determine how much heat must be added to the water to raise its temperature from 20.0°C to 89.0°C?
We need to calculate the heat
Using formula of heat

Where, m = mass of water
c = specific heat
Put the value into the formula


Hence, The heat is 115478.4 J.