Answer:
The capacitance of a capacitor depends on the charge and voltage of a system. It is also dependent, if present, on the dielectric as well.
General Formulas and Concepts:
<u>Gauss's Law</u>
Capacitance Formula: 
- <em>Q</em> denotes charge
- <em>V</em> denotes voltage
Dielectric Capacitance Formula: 
- <em>C₀</em> denotes original capacitance
- <em>κ</em> denotes the dialectic constant
Explanation:
A <u>capacitor</u> <em>stores</em> charge when run through an electrical current. The <u>capacitance</u> is <em>how much </em>charge a capacitor can hold.
We can define the relationship of capacitance by using the formula. Capacitance is <em>inversely proportional</em> to the potential energy, or <u>voltage</u>, of the system. Therefore, you will need to know what the <u>charge</u> Q of the system as well has voltage V in order to find the capacitance.
If there is a dielectric involved inside the capacitance, you also must incorporate the value of the <u>dielectric constant </u>into your capacitance. A dielectric is <em>directly proportional </em>to the capacitance; the bigger the dielectric constant, the bigger capacitance, as denoted in our equation.
Topic: AP Physics C - EMAG
Unit: Gauss's Law
The closure temperature represents the point when isotopes are no longer free to move out of a crystal lattice.
Answer: Option C
<u>Explanation:</u>
The closure temperature can also be termed as blocking temperature. It is mostly used in radiometric dating. As the temperature decreases, below a certain point the isotopes may get freeze in their lattice positions. And there may be slowing of diffusion.
At the closure temperature, that rate of diffusion will be zero as the isotopes will be no longer free to move out of crystal lattice. So, this is termed as closure or blocking temperature. As the isotopes loose their ability to move, their concentration will remain fixed in their position leading to measurement of radiation dating.
When you touch a doorknob (or something else made of metal), which has a positive charge with few electrons, the extra electrons want to jump from you to the knob. That tiny shock you feel is a result of the quick movement of these electrons.
If we will connect the resistors 2ohms, 3ohms, 5ohms in series and the 10ohms resistance parallel then we get equivalent resistance of 5 ohms.
The equivalent circuit is,
R equivalent for the series connection is,

The equivalent resistance is 5 ohms.
So your friend is saying true.
work done =force /area
=500/50
power =work done * time taken