Answer:
Frequency = 0.005× 10¹⁷ s⁻¹
E = 0.03 × 10⁻²⁰KJ
Explanation:
Given data:
Wavelength of light = 630.0 nm (630 × 10⁻⁹ m)
Frequency of light = ?
Energy in joule = ?
Solution:
speed of light = wavelength × frequency
Frequency = speed of light / wavelength
Frequency = 3 × 10⁸ m/s / 630 × 10⁻⁹ m
Frequency = 0.005× 10¹⁷ s⁻¹
Energy:
E = h. f
E = 6.63× 10⁻³⁴ Kg. m²/s × 0.005× 10¹⁷ s⁻¹
E = 0.03 × 10⁻¹⁷ j
E = 0.03 × 10⁻¹⁷ j×1 kj /1000 j
E = 0.03 × 10⁻²⁰KJ
Answer:
Increase
Explanation:
If temperature is held constant, the equation is reduced to Boyle's law. Therefore, if you decrease the pressure of a fixed amount of gas, its volume will increase.
Then it would become: S2-
Its charge will be -2.
Hdjdjejejeuuwuwjwjwjwwjwhwhwhehehehehehdhdhdhdhdhdh
Answer:
V₂ = 16.5 L
Explanation:
To solve this problem we use <em>Avogadro's law, </em>which applies when temperature and pressure remain constant:
V₁/n₁ = V₂/n₂
In this case, V₁ is 22.0 L, n₁ is [mol CO + mol NO], V₂ is our unknown, and n₂ is [mol CO₂ + mol N₂].
- n₁ = mol CO + mol NO = 0.1900 + 0.1900 = 0.3800 mol
<em>We use the reaction to calculate n₂</em>:
2CO(g) + 2NO(g) → 2CO₂(g) + N₂(g)
0.1900 mol CO *
0.1900 mol CO₂
0.1900 mol NO *
0.095 mol N₂
- n₂ = mol CO₂ + mol N₂ = 0.1900 + 0.095 = 0.2850 mol
Calculating V₂:
22.0 L / 0.3800 mol = V₂ / 0.2850 mol
V₂ = 16.5 L