Some things that can indicate a chemical change are change of odor, change of color, change in temperature or energy, such as the production or loss of heat. An example could be the rusting of metal, there would be a color change of going from a shiny silver to a dirty, splotchy red color. Some things that indicate a physical change are change of appearance like change of shape, etc. It can also be like a change between a solid to liquid to gas. For example, the cutting of a piece of paper.
Because there are so many different values of numbers, it would be impractical to use 1Ω, 2Ω, 3Ω... etc... Using colored bands helps make reading it a little easier to the trained eye. There are hundreds of thousands, if not tens of millions of different resistors would need to exist to cover every value. So you just use something called "preferred values" with their resistance values posted on them instead.
KOH+ HNO3--> KNO3+ H2O<span>
From this balanced equation, we know that 1 mol
HNO3= 1 mol KOH (keep in mind this because it will be used later).
We also know that 0.100 M KOH aqueous
solution (soln)= 0.100 mol KOH/ 1 L of KOH soln (this one is based on the
definition of molarity).
First, we should find the mole of KOH:
100.0 mL KOH soln* (1 L KOH soln/
1,000 mL KOH soln)* (0.100 mol KOH/ 1L KOH soln)= 1.00*10^(-2) mol KOH.
Now, let's find the volume of HNO3 soln:
1.00*10^(-2) mol KOH* (1 mol HNO3/ 1 mol KOH)* (1 L HNO3 soln/ 0.500 mol HNO3)* (1,000 mL HNO3 soln/ 1 L HNO3 soln)= 20.0 mL HNO3 soln.
The final answer is </span>(2) 20.0 mL.<span>
Also, this problem can also be done by using
dimensional analysis.
Hope this would help~
</span>
Answer:
sulfur promotes oxide-reduction reactions.
Explanation:
In stagnant water, some solutes tend to precipitate. When Sulfur precipitate and touch a metal, Sulfur is being reduced and the metal is oxidated. This depends of potential redox of each element.