Let S be the sum,
S = 2 + 4 + 6 + ... + 2 (n - 2) + 2 (n - 1) + 2n
Reverse the order of terms:
S = 2n + 2 (n - 1) + 2 (n - 2) + ... + 6 + 4 + 2
Add up terms in the same positions, so that twice the sum is
2S = (2n + 2) + (2n + 2) + (2n + 2) + ... + (2n + 2)
or
2S = n (2n + 2)
Divide both sides by 2 to solve for S :
S = n (n + 1)
ANSWER
A.

EXPLANATION
The given equation is

This equation is already in the form:

This is called the slope-intercept form.
The slope is

and the y-intercept is 3.
The correct answer is A.
In a situation where the line is not given in the slope intercept form, then you must rewrite in this form before comparing.
Answer:
-2x^2
Step-by-step explanation:
Simplify
x^-1 - 2x^2 - x^-1
becomes
-2x^2
Given:
The system of equations:


To find:
The number that can be multiplied by the second equation to eliminate the x-variable when the equations are added together.
Solution:
We have,
...(i)
...(ii)
The coefficient of x in (i) and (ii) are 1 and
respectively.
To eliminate the variable x by adding the equations, we need the coefficients of x as the additive inverse of each other, i.e, a and -a So, a+(-a)=0.
It means, we have to convert
into -1. It is possible if we multiply the equation (ii) by -5.
On multiplying equation (ii) by -5, we get
...(iii)
On adding (i) and (iii), we get

Here, x is eliminated.
Therefore, the number -5 can be multiplied by the second equation to eliminate the x-variable.
We can't find the hundredth for you, but the nearest hundred is $95,500.