Answer:
A table salt molecule is bigger than a salt molecule.
Explanation:
I'm saying this because it's a table salt and salt could be much smaller and table salt could be bigger.
Answer:
[N2] = 0.3633M
[H2] = 1.090M
[NH3] = 0.2734M
Explanation:
Based on the reaction of the problem, Kc is defined as:
Kc = 0.159 = [NH3]² / [N2] [H2]³
<em>Where [] are the equilibrium concentrations.</em>
The initial concentrations of the reactants is:
N2 = 1.00mol / 2.00L = 0.500M
H2 = 3.00mol / 2.00L = 1.50M
When the equilibrium is reached, the concentrations are:
[N2] = 0.500M - X
[H2] = 1.50M - 3X
[NH3] = 2X
<em>Where X is reaction quotient</em>
Replacing in the Kc equation:
0.159 = [2X]² / [0.500 - X] [1.50 - 3X]³
0.159 = 4X² / 1.6875 - 13.5 X + 40.5 X² - 54 X³ + 27 X⁴
0.268313 - 2.1465 X + 6.4395 X² - 8.586 X³ + 4.293 X⁴ = 4X²
0.268313 - 2.1465 X + 2.4395 X² - 8.586 X³ + 4.293 X⁴ = 0
Solving for X:
X = 0.1367. Right solution.
X = 1.8286. False solution. Produce negative concentrations
Replacing:
[N2] = 0.500M - 0.1367M
[H2] = 1.50M - 3*0.1367M
[NH3] = 2*0.1367M
The equilibrium concentrations are:
<h3>[N2] = 0.3633M</h3><h3>[H2] = 1.090M</h3><h3>[NH3] = 0.2734M</h3>
Yes, it mixes it and has vitamins in the tea.
Answer:
c. 0.1 M Ga₂(SO₄)₃
Explanation:
The boiling point increasing of a solvent due the addition of a solute follows the formula:
ΔT = K*m*i
<em>Where K is boiling point increasing constant (Depends of the solute), m is molality = molarity when solvent is water, and i is Van't Hoff factor.</em>
<em />
That means the option with the higher m*i will be the solution with the highest boiling point:
a. NaCl has i = 2 (NaCl dissociates in Na⁺ and Cl⁻ ions).
m* i = 0.20*2 = 0.4
b. CaCl₂; i = 3. 3 ions.
m*i= 0.10M * 3 = 0.3
c. Ga₂(SO₄)₃ dissolves in 5 ions. i = 5
m*i = 0.10M*55 = 0.5
d. C₆H₁₂O₆ has i = 1:
m*i = 0.2M*1 = 0.2
The solution with highest boiling point is:
<h3>
c. 0.1 M Ga₂(SO₄)₃</h3>