Explanation:
Given:
m = 1.673 × 10^-27 kg
Q = q = 1.602 × 10^-19 C
r = 0.75 nm
= 0.75 × 10^-9 m
A.
Energy, U = (kQq)/r
Ut = 1/2 mv^2 + 1/2 mv^2
1.673 × 10^-27 × v^2 = (8.99 × 10^9 × (1.602 × 10^-19)^2)/0.75 × 10^-9
v = 1.356 × 10^4 m/s
B.
F = (kQq)/r^2
F = m × a
1.673 × 10^-27 × a = ((8.99 × 10^9 × (1.602 × 10-19)^2)/(0.075 × 10^-9)^2
a = 2.45 × 10^17 m/s^2.
Answer:
Explanation:
We shall apply conservation of momentum law in vector form to solve the problem .
Initial momentum = 0
momentum of 12 g piece
= .012 x 37 i since it moves along x axis .
= .444 i
momentum of 22 g
= .022 x 34 j
= .748 j
Let momentum of third piece = p
total momentum
= p + .444 i + .748 j
so
applying conservation law of momentum
p + .444 i + .748 j = 0
p = - .444 i - .748 j
magnitude of p
= √ ( .444² + .748² )
= .87 kg m /s
mass of third piece = 58 - ( 12 + 22 )
= 24 g = .024 kg
if v be its velocity
.024 v = .87
v = 36.25 m / s .
You do 1000 divide it by 10 which equals 100 W
My personal understanding and opinion is that ALL of those questions
should be part of an assessment of Physical Activity Readiness.
Answer:
A galaxy is a gravitationally bound system of stars, stellar remnants, interstellar gas, dust, and dark matter. The word galaxy is derived from the Greek galaxias, literally "milky", a reference to the Milky Way.
Explanation: