1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Aloiza [94]
3 years ago
7

Objective lenses are contained in a ____________ that can be turned to put a particular objective lens in place to be used.

Physics
1 answer:
Masteriza [31]3 years ago
6 0

Answer:

Revolving nosepiece

Explanation:

The revolving nosepiece is one of the parts of a microscope, used for holding the objective lenses. They can be turned to put a particular objective lens in place to be used in order to vary magnification.

You might be interested in
8459299
sergeinik [125]

Answer:

Mechanical energy is the energy that is possessed by an object due to its motion or due to its position. Mechanical energy can be either kinetic energy (energy of motion) or potential energy

3 0
3 years ago
A projectile is fired with an initial velocity of 120.0 meters per second at an angle, θ above the horizontal. If the projectile
k0ka [10]

Answer:

θ = 62.72°

Explanation:

The projectile describes a parabolic path:

The parabolic movement results from the composition of a uniform rectilinear motion (horizontal ) and a uniformly accelerated rectilinear motion of upward or downward motion (vertical ).

The equation of uniform rectilinear motion (horizontal ) for the x axis is :

x = x₀+ vx*t   Formula (1)

vx = v₀x

Where:  

x: horizontal position in meters (m)

x₀: initial horizontal position in meters (m)

t : time (s)

vx: horizontal velocity  in m/s

v₀x: Initial speed in x  in m/s

The equations of uniformly accelerated rectilinear motion of upward (vertical ) for the y axis  are:

y= y₀+(v₀y)*t - (1/2)*g*t² Formula (2)

vfy= v₀y -gt Formula (3)

Where:  

y: vertical position in meters (m)  

y₀ : initial vertical position in meters (m)  

t : time in seconds (s)

v₀y: initial  vertical velocity  in m/s  

vfy: final  vertical velocity  in m/s  

g: acceleration due to gravity in m/s²

Data

v₀ = 120 m/s  , at an angle  θ above the horizontal

v₀x= 55 m/s

x-y components of the initial  velocity ( v₀)

v₀x = v₀*cosθ Equation (1)

v₀y = v₀*sinθ   Equation (2)

Calculating of the angle θ

We replace data in the  Equation (1)

55 =  120*cosθ

cosθ = 55 / 120

\theta = cos^{-1}(  \frac{55}{120} )

θ = 62.72°

3 0
3 years ago
You and your friend throw balloons filled with water from the roof of a several story apartment house. You simply drop a balloon
Aleks [24]

Answer:

Height = 53.361 m

Explanation:

There are two balloons being thrown down, one with initial speed (u1) = 0 and the other with initial speed (u2) = 43.12

From the given information we make the following summary

u_{1} = 0m/s

t_{1} = t

u_{2} = 43.12m/s

t_{2} = (t-2.2)s

The distance by the first balloon is

D = u_{1} t_{1}  + \frac{1}{2} at_{1}^2

where

a = 9.8m/s2

Inputting the values

D = (0)t + \frac{1}{2} (9.8)t^2\\ D = 4.9t^2

The distance traveled by the second balloon

D = u_{2} t_{2}  + \frac{1}{2} at_{2}^2

Inputting the values

D = (43.12)(t-2.2)  + \frac{1}{2} (9.8)(t-2.2)^2

simplifying

D = 4.9t^2 + 21.56t -71.148

Substituting D of the first balloon into the D of the second balloon and solving

4.9t^2 = 4.9t^2 + 21.56t -71.148 \\ 21.56t = 71.148\\ t = 3.3s

Now we know the value of t. We input this into the equation of the first balloon the to get height of the apartment

D = 4.9(3.3)^2\\ D = 53.361 m

7 0
3 years ago
A girl exerts a horizontal force of 109 N on a crate with a mass of 31.2 kg. HINT (a) If the crate doesn't move, what's the magn
vesna_86 [32]

Answer:

(a) Magnitude of static friction force is 109 N

(b) Minimum possible value of static friction is 0.356

Solution:

As per the question;

Horizontal force exerted  by the girl, F = 109 N

Mass of the crate, m = 31.2 kg

Now,

(a) To calculate the magnitude of static friction force:

Since, the crate is at rest, the forces on the crate are balanced and thus the horizontal force is equal to the frictional force, f:

F = f = 109 N

(b) The maximum possible force of friction between the floor and the crate is given by:

f_{m} = \mu_{s}N

where

N = Normal reaction = mg

Thus

f_{m} = \mu_{s}mg

For the crate to remain at rest, The force exerted on the crate must be less than or equal to the maximum force of friction.

f\leq f_{m}

f \leq \mu_{s}mg

109 \leq \mu_{s}\times 31.2\times 9.8

\mu_{s}\geq 0.356

7 0
3 years ago
Which of the following is a common feature among the four inner planets?
denpristay [2]
<span>rocky surface

(outer plants are made of gas)</span>
6 0
3 years ago
Other questions:
  • For lunch you eat French fries at a new restaurant later that day you get the stomache flu and are vomiting all night the next d
    10·1 answer
  • Which term describes the amount of heat needed to change 1 kg of a substance from solid to liquid at its melting point? A. Speci
    13·1 answer
  • What is the name and symbol of the element in the second row and fourteenth column of the periodic table? Hint: Review your peri
    12·1 answer
  • What is the definition of permitted orbits ?
    5·1 answer
  • Help me plzzzzzzzz with this
    6·1 answer
  • An exercise program that lacks specific goals is failing what fitness principle?
    9·2 answers
  • A train is pulling four train cars and each car has a mass of 40,000 kg. The train is accelerating at 1.1 m/s^2. What is the for
    12·2 answers
  • Is average speed a scalar or vector quantity? why?
    6·1 answer
  • Rutherford tracked the motion of tiny, positively charged particles shot through a thin sheet of gold foil. Some particles trave
    11·1 answer
  • A car accelerates at a constant rate of 3 m/s2 for 5 seconds. If it reaches a velocity of 27 m/s, what was its initial velocity?
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!