Using your periodic table if you look at it 3-11 are tansition metals so the horizontal Group Number will help if the group number has to digits just remove the one so if it were to be 13, the valence would be 3, if it were 14 the valence would be ,4 if it were 15, the valence would be 5, if it were 16 the valence would be 6, if it were 17 the valence would be 7 if it were group 18 the valence would be 8 so if anymore help needed to explain hit me up
The cart that has the smallest mass of sports equipment in it
has the greatest change in speed. We know this from Newton's
second law of motion ...
Force = (mass) x (acceleration).
If several objects have the same force acting on them, then the one
with the smallest mass has the greatest acceleration.
Answer:
ΔU = -70 J
Explanation:
ΔU = Q − W
where ΔU is the change in internal energy,
Q is the heat absorbed by the system,
and W is the work done by the system (on the surroundings).
30 J of thermal energy is released, so Q = -30 J.
40 J of work is done by the system, so W = 40 J.
Therefore, the change in internal energy is:
ΔU = -30 J − 40 J
ΔU = -70 J
Answer:
d. The length of the string is equal to one-half of a wavelength
Explanation:
A stretched string of length L, fixed at both ends, is vibrating in its third harmonic. How far from the end of the string can the blade of a screwdriver be placed against the string without disturbing the amplitude of the vibration
a. The length of the sting is equal to one-quarter of a wavelength.b. The length of the string is equal to the wavelength.c. The length of the string is equal to twice the wavelength.d. The length of the string is equal to one-half of a wavelength
e. The length of the string is equal to four times the wavelength
A stretched string of length L fixed at both ends is vibrating in its third harmonic H
How far from the end of the string can the blade of a screwdriver be placed against the string without disturbing the amplitude of the vibration
d. The length of the string is equal to one-half of a wavelength
There are two points during vibration , the node and the antinode
the node is the point where the amplitude is zero.
from the third harmonics, there are two nodes. The first node is half of the wavelength which is the closest to the fixed point.
for third harmonics=3/2lamda
Acceleration = -12 / 8 = - .... m/s^2