<span>A capacitor with a very large capacitance is in series with a capacitor
that has a very small capacitance.
The capacitance of the series combination is slightly smaller than the
capacitance of the small capacitor. (choice-C)
The capacitance of a series combination is
1 / (1/A + 1/B + 1/C + 1/D + .....) .
If you wisk, fold, knead, and mash that expression for a while,
you find that for only two capacitors in series, (or 2 resistors or
two inductors in parallel), the combination is
(product of the 2 individuals) / (sum of the individuals) .
In this problem, we have a humongous one and a tiny one.
Let's call them 1000 and 1 .
Then the series combination is
(1000 x 1) / (1000 + 1)
= (1000) / (1001)
= 0.999 000 999 . . .
which is smaller than the smaller individual.
It'll always be that way. </span>
Answer:
it should be right it's from go.ogle hm!!!
Explanation:
Anterior or ventral - front (example, the kneecap is located on the anterior side of the leg). Posterior or dorsal - back (example, the shoulder blades are located on the posterior side of the body). Medial - toward the midline of the body (example, the middle toe is located at the medial side of the foot).
Answer:
± (.021 ) ohm
Explanation:
In the addition of two physical quantities , the uncertainties are simply added .
So , net uncertainty in the value of R will be
± (.007 +.014)
=± (.021 ) ohm
Answer
It will stay the same!
Explanation:
If you so happen to move something from left to right, the size of it is not being shrunk or expanded in any type of way, shape, or form.