Answer:
33 Celsius is 306.15 in absolute temperature
Answer:
C) 7.35*10⁶ N/C radially outward
Explanation:
- If we apply the Gauss'law, to a spherical gaussian surface with radius r=7 cm, due to the symmetry, the electric field must be normal to the surface, and equal at all points along it.
- So, we can write the following equation:

- As the electric field must be zero inside the conducting spherical shell, this means that the charge enclosed by a spherical gaussian surface of a radius between 4 and 5 cm, must be zero too.
- So, the +8 μC charge of the solid conducting sphere of radius 2cm, must be compensated by an equal and opposite charge on the inner surface of the conducting shell of total charge -4 μC.
- So, on the outer surface of the shell there must be a charge that be the difference between them:

- Replacing in (1) A = 4*π*ε₀, and Qenc = +4 μC, we can find the value of E, as follows:

- As the charge that produces this electric field is positive, and the electric field has the same direction as the one taken by a positive test charge under the influence of this field, the direction of the field is radially outward, away from the positive charge.
Answer:
A. Two strands of nucleotides bonded together at their bases,
twisting to form a double helix
Explanation:
Hope this helps! Can I have brainliest?
Answer:

Explanation:
q = Charge in the potassium ion = 
e = Charge of electron = 
= Change in potential = 
Change in electric potential is given by

The energy is 
Answer:
B = ρ g V_liquid
the thrust is proportional to the density of the liquid
Explanation:
The density of a liquid is defined as the relationship between the mass and the volume of the liquid
ρ = m / V
The upward push of the liquid is given by the principle of Archimedes Archimedes establishes that the push is equal to the weight of the dislodged liquid
B = W_liquid
B = m _liquid g
we substitute mass for density
B = ρ g V_liquid
therefore we see that the thrust is proportional to the density of the liquid