For example, a trade secret may<span> be a confidential device, pattern, </span>information<span>, or </span>chemical<span> make-up.</span>Chemical industry<span> trade secrets are generally formulas, process data, or a "specific </span>chemical<span> identity." The latter is the type of trade secret </span>information<span> referred to in the Hazard Communication Standard. The term includes</span>
A light year is the DISTANCE light travels through vacuum in 1 year.
If light is traveling through vacuum, then it's traveling at the speed of light in vacuum. If a student at home at the beginning of the trip is holding the clock, then ...
Traveling 1 light year takes 1 year.
Traveling 2 light years takes 2 years.
Traveling 3 light years takes 3 years.
Traveling 10 light years takes 10 years.
If the light is traveling through some other substance, or if the clock is traveling along with the light, then these numbers all change.
YOU cannot travel at the speed of light. We have to just leave it at that
Water was confirmed to be on the sunlit surface of the Moon
Answer:
The wave speed of the sound wave is 900
.
Explanation:
Wavelength is the minimum distance between two successive points on the wave that are in the same state of vibration. It is expressed in units of length (m).
Frequency is the number of vibrations that occur in a unit of time. Its unit is s⁻¹ or hertz (Hz).
The propagation velocity is the speed with which the wave propagates in the medium, that is, it is the magnitude that measures the speed at which the wave disturbance propagates along its displacement. Relate the wavelength (λ) and the frequency (f) inversely proportional using the following equation: v = f * λ.
In this case:
Replacing:
v= 500 Hz* 1.8 m
v= 900 
<u><em>The wave speed of the sound wave is 900 </em></u>
<u><em>.</em></u>
Answer:
Final velocity (v) = 36 m/s
Distance traveled (s) = 2,160 m
Explanation:
Given:
Initial velocity (u) = 0
Acceleration (a) = 0.3 m/s
Time travel (t) = 2 minutes = 120 seconds
Find:
Final velocity (v) = ?
Distance traveled (s) = ?
Computation:
v = u + at
v = 0 + 0.3(120)
v = 0.3(120)
v = 36 m/s
Final velocity (v) = 36 m/s
Distance traveled (s) = ut + (1/2)at²
Distance traveled (s) = (0.5)(0.3 × 120 × 120)
Distance traveled (s) = 2,160 m